Mastoparan

Last updated
Mastoparan
Mastoparan.png
Solution structure of mastoparan from Vespa simillima xanthoptera . [1]
Identifiers
SymbolMastoparan_2
Pfam PF08251
InterPro IPR013214
TCDB 1.C.32
OPM superfamily 151
OPM protein 2czp
Available protein structures:
Pfam   structures / ECOD  
PDB RCSB PDB; PDBe; PDBj
PDBsum structure summary

Mastoparan is a peptide toxin from wasp venom. It has the chemical structure Ile-Asn-Leu-Lys-Ala-Leu-Ala-Ala-Leu-Ala-Lys-Lys-Ile-Leu-NH2. [2]

Contents

The net effect of mastoparan's mode of action depends on cell type, but seemingly always involves exocytosis. In mast cells, this takes the form of histamine secretion, while in platelets and chromaffin cells release serotonin and catecholamines are found, respectively. Mastoparan activity in the anterior pituitary gland leads to prolactin release.

In the case of histamine secretion, the effect of mastoparan takes place via its interference with G protein activity. By stimulating the GTPase activity of certain subunits, mastoparan shortens the lifespan of active G protein. At the same time, it promotes dissociation of any bound GDP from the protein, enhancing GTP binding. In effect, the GTP turnover of G proteins is greatly increased by mastoparan. These properties of the toxin follow from the fact that it structurally resembles activated G protein receptors when placed in a phospholipid environment. The resultant G protein-mediated signaling cascade leads to intracellular IP3 release and the resultant influx of Ca2+.

Research has shown that Mastoparan inhibits all developmental forms of Trypanosoma cruzi , the parasite that is responsible for Chagas disease. [3]

Structural transition

In an experimental study conducted by Tsutomu Higashijima and his counterparts, mastoparan was compared to melittin, which is found in bee venom. [2] Mainly, the structure and reaction to phosphate was studied in each toxin. Using Circular Dichroism (CD), it was found that when mastoparan was exposed to methanol, an alpha helical form existed. It was concluded that strong intramolecular hydrogen bonding occurred. Also, two negative bands were present on the CD spectrum. In an aqueous environment, mastoparan took on a nonhelical, unordered form. In this case, only one negative band was observed on the CD spectrum. Adding phosphate buffer to mastoparan resulted in no effect.[ citation needed ]

Melittin produced a different conformational change than mastoparan. In an aqueous solution, melittin went from a nonhelical form to an alpha helix when phosphate was added to the solution. The binding of melittin to the membrane was believed to result from electrostatic interactions, not hydrophobic interactions.[ citation needed ]

Attempts to remove mastoparan toxicity

Despite the toxic effects to mammalian cells, mastoparan is also a potential antibiotic template due to its potent antimicrobial activity. In design study performed by Irazazabal and co-workers (2016), [4] it was demonstrated that the inclusion of an isoleucine and an arginine residue at positions 5 and 8 respectively [I5, R8], dramatically reduced the toxicity of mastoparan, turning it into a potentially valuable drug for fighting infectious disease.[ citation needed ]

Related Research Articles

GTPases are a large family of hydrolase enzymes that bind to the nucleotide guanosine triphosphate (GTP) and hydrolyze it to guanosine diphosphate (GDP). The GTP binding and hydrolysis takes place in the highly conserved P-loop "G domain", a protein domain common to many GTPases.

Phospholipase A<sub>2</sub> Peripheral membrane protein

The enzyme phospholipase A2 (EC 3.1.1.4, PLA2, systematic name phosphatidylcholine 2-acylhydrolase) catalyses the cleavage of fatty acids in position 2 of phospholipids, hydrolyzing the bond between the second fatty acid “tail” and the glycerol molecule:

Growth hormone–releasing hormone (GHRH), also known as somatocrinin among other names in its endogenous form and as somatorelin (INN) in its pharmaceutical form, is a releasing hormone of growth hormone (GH). It is a 44-amino acid peptide hormone produced in the arcuate nucleus of the hypothalamus.

omega-Grammotoxin SIA (ω-grammotoxin SIA) is a protein toxin that inhibits P, Q, and N voltage-gated calcium channels (Ca2+ channels) in neurons.

<span class="mw-page-title-main">Calciseptine</span> Neurotoxin

Calciseptine (CaS) is a natural neurotoxin isolated from the black mamba Dendroaspis p. polylepis venom. This toxin consists of 60 amino acids with four disulfide bonds. Calciseptine specifically blocks L-type calcium channels, but not other voltage-dependent Ca2+ channels such as N-type and T-type channels.

<span class="mw-page-title-main">Slotoxin</span> Chemical compound

Slotoxin is a peptide from Centruroides noxius Hoffmann scorpion venom. It belongs to the short scorpion toxin superfamily.

<span class="mw-page-title-main">Margatoxin</span>

Margatoxin (MgTX) is a peptide that selectively inhibits Kv1.3 voltage-dependent potassium channels. It is found in the venom of Centruroides margaritatus, also known as the Central American Bark Scorpion. Margatoxin was first discovered in 1993. It was purified from scorpion venom and its amino acid sequence was determined.

<span class="mw-page-title-main">Grammotoxin</span> Toxin

Grammotoxin is a toxin in the venom of the tarantula Grammostola spatulata. It is a protein toxin that inhibits P-, Q- and N-type voltage-gated calcium channels in neurons. Grammotoxin is also known as omega-grammotoxin SIA.

The formyl peptide receptors (FPR) belong to a class of G protein-coupled receptors involved in chemotaxis. In humans, there are three formyl peptide receptor isoforms, each encoded by a separate gene that are named FPR1, FPR2, and FPR3. These receptors were originally identified by their ability to bind N-formyl peptides such as N-formylmethionine produced by the degradation of either bacterial or host cells. Hence formyl peptide receptors are involved in mediating immune cell response to infection. These receptors may also act to suppress the immune system under certain conditions. The close phylogenetic relation of signaling in chemotaxis and olfaction was recently proved by detection formyl peptide receptor like proteins as a distinct family of vomeronasal organ chemosensors in mice.

<span class="mw-page-title-main">Apamin</span> Chemical compound

Apamin is an 18 amino acid globular peptide neurotoxin found in apitoxin (bee venom). Dry bee venom consists of 2–3% of apamin. Apamin selectively blocks SK channels, a type of Ca2+-activated K+ channel expressed in the central nervous system. Toxicity is caused by only a few amino acids, in particular cysteine1, lysine4, arginine13, arginine14 and histidine18. These amino acids are involved in the binding of apamin to the Ca2+-activated K+ channel. Due to its specificity for SK channels, apamin is used as a drug in biomedical research to study the electrical properties of SK channels and their role in the afterhyperpolarizations occurring immediately following an action potential.

Orexin-A, also known as hypocretin-1, is a naturally occurring neuropeptide and orexin isoform. The orexinergic nucleus in the lateral hypothalamus is the primary orexin projection system in the brain.

Pompilidotoxins (PMTXs) are toxic substances that can only be found in the venom of several solitary wasps. This kind of wasp uses their venom to offensively capture prey and is relatively harmless to humans. This is in stark contrast to social insects that defend themselves and their colonies with their venom.

Mast cell degranulating (MCD) peptide is a cationic 22-amino acid residue peptide, which is a component of the venom of the bumblebee. At low concentrations, MCD peptide can stimulate mast cell degranulation. At higher concentrations, it has anti-inflammatory properties. In addition, it is a potent blocker of voltage-sensitive potassium channels.

Helothermine is a toxin from the venom of the Mexican beaded lizard Heloderma horridum horridum. Helothermine inhibits ryanodine receptors, calcium channels and potassium channels. Helothermine can cause lethargy, partial paralysis of rear limbs and lowering of the body temperature.

<span class="mw-page-title-main">Guangxitoxin</span>

Guangxitoxin, also known as GxTX, is a peptide toxin found in the venom of the tarantula Plesiophrictus guangxiensis. It primarily inhibits outward voltage-gated Kv2.1 potassium channel currents, which are prominently expressed in pancreatic β-cells, thus increasing insulin secretion.

Hanatoxin is a toxin found in the venom of the Grammostola spatulata tarantula. The toxin is mostly known for inhibiting the activation of voltage-gated potassium channels, most specifically Kv4.2 and Kv2.1, by raising its activation threshold.

Centruroides suffusus suffusus toxin II (CssII) is a scorpion β-toxin from the venom of the scorpion Centruroides suffusus suffusus. CssII primarily affects voltage-gated sodium channels by causing a hyperpolarizing shift of voltage dependence, a reduction in peak transient current, and the occurrence of resurgent currents.

<span class="mw-page-title-main">Wasabi receptor toxin</span>

Wasabi receptor toxin (WaTx) is the active component of the venom of the Australian black rock scorpion Urodacus manicatus. WaTx targets TRPA1, also known as the wasabi receptor or irritant receptor. WaTx is a cell-penetrating toxin that stabilizes the TRPA1 channel open state while reducing its Ca2+-permeability, thereby eliciting pain and pain hypersensitivity without the neurogenic inflammation that typically occurs in other animal toxins.

<span class="mw-page-title-main">Vejocalcin</span> Toxin

Vejocalcin is a toxin from the venom of the Mexican scorpion Vaejovis mexicanus. Vejocalcin is a member of the calcin family of toxins. It acts as a cell-penetrating peptide (CPP); it binds with high affinity and specificity to skeletal ryanodine receptor 1 (RYR1) of the sarcoplasmic reticulum, thereby triggering calcium release from intracellular Ca2+
stores.

Protoxin-I, also known as ProTx-I, or Beta/omega-theraphotoxin-Tp1a, is a 35-amino-acid peptide neurotoxin extracted from the venom of the tarantula Thrixopelma pruriens. Protoxin-I belongs to the inhibitory cystine knot (ICK) family of peptide toxins, which have been known to potently inhibit voltage-gated ion channels. Protoxin-I selectively blocks low voltage threshold T-type calcium channels, voltage gated sodium channels and the nociceptor cation channel TRPA1. Due to its unique ability to bind to TRPA1, Protoxin-I has been implicated as a valuable pharmacological reagent with potential applications in clinical contexts with regards to pain and inflammation

References

  1. PDB: 2CZP ; Todokoro Y, Yumen I, Fukushima K, Kang SW, Park JS, Kohno T, Wakamatsu K, Akutsu H, Fujiwara T (August 2006). "Structure of Tightly Membrane-Bound Mastoparan-X, a G-Protein-Activating Peptide, Determined by Solid-State NMR". Biophys. J. 91 (4): 1368–79. Bibcode:2006BpJ....91.1368T. doi:10.1529/biophysj.106.082735. PMC   1518647 . PMID   16714348.
  2. 1 2 Higashijima T, Uzu S, Nakajima T, Ross EM (May 1988). "Mastoparan, a peptide toxin from wasp venom, mimics receptors by activating GTP-binding regulatory proteins (G proteins)". J. Biol. Chem. 263 (14): 6491–4. doi: 10.1016/S0021-9258(18)68669-7 . PMID   3129426.
  3. Vinhote, J. F. C., Lima, D. B., Mello, C. P., de Souza, B. M., Havt, A., Palma, M. S., ... & Martins, A. M. C. (2017). Trypanocidal activity of mastoparan from Polybia paulista wasp venom by interaction with TcGAPDH. Toxicon.
  4. Irazazabal, Luz N.; Porto, William F.; Ribeiro, Suzana M.; Casale, Sandra; Humblot, Vincent; Ladram, Ali; Franco, Octavio L. (2016-11-01). "Selective amino acid substitution reduces cytotoxicity of the antimicrobial peptide mastoparan". Biochimica et Biophysica Acta (BBA) - Biomembranes. 1858 (11): 2699–2708. doi: 10.1016/j.bbamem.2016.07.001 . PMID   27423268.