Maternal to zygotic transition

Last updated

Maternal to zygotic transition (MZT), also known as embryonic genome activation, is the stage in embryonic development during which development comes under the exclusive control of the zygotic genome rather than the maternal (egg) genome. The egg contains stored maternal genetic material mRNA which controls embryo development until the onset of MZT. After MZT the diploid embryo takes over genetic control. [1] [2] This requires both zygotic genome activation (ZGA) and degradation of maternal products. This process is important because it is the first time that the new embryonic genome is utilized and the paternal and maternal genomes are used in combination (ie. different alleles will be expressed). The zygotic genome now drives embryo development.

Contents

MZT is often thought to be synonymous with midblastula transition (MBT), but these processes are, in fact, distinct. [3] However, the MBT roughly coincides with ZGA in many metazoans, [4] and thus may share some common regulatory features. For example, both processes are proposed to be regulated by the nucleocytoplasmic ratio. [5] [6] MBT strictly refers to changes in the cell cycle and cell motility that occur just prior to gastrulation. [3] [4] In the early cleavage stages of embryogenesis, rapid divisions occur synchronously and there are no "gap" stages in the cell cycle. [3] During these stages, there is also little to no transcription of mRNA from the zygotic genome, [5] but zygotic transcription is not required for MBT to occur. [3] Cellular functions during early cleavage are carried out primarily by maternal products – proteins and mRNAs contributed to the egg during oogenesis.

Zygotic genome activation

Generalized diagram showing levels of maternal and zygotic mRNA levels over the course of embryogenesis. Maternal to zygotic transition (MZT) is the period during which zygotic genes are activated and maternal transcripts are cleared. After Schier (2007). Maternal-zygotic-transition.png
Generalized diagram showing levels of maternal and zygotic mRNA levels over the course of embryogenesis. Maternal to zygotic transition (MZT) is the period during which zygotic genes are activated and maternal transcripts are cleared. After Schier (2007).

To begin transcription of zygotic genes, the embryo must first overcome the silencing that has been established. The cause of this silencing could be due to several factors: chromatin modifications leading to repression, lack of adequate transcription machinery, or lack of time in which significant transcription can occur due to the shortened cell cycles. [7] Evidence for the first method was provided by Newport and Kirschner's experiments showing that nucleocytoplasmic ratio plays a role in activating zygotic transcription. [5] [8] They suggest that a defined amount of repressor is packaged into the egg, and that the exponential amplification of DNA at each cell cycle results in titration of the repressor at the appropriate time. Indeed, in Xenopus embryos in which excess DNA is introduced, transcription begins earlier. [5] [8] More recently, evidence has been shown that transcription of a subset of genes in Drosophila is delayed by one cell cycle in haploid embryos. [9] The second mechanism of repression has also been addressed experimentally. Prioleau et al. show that by introducing TATA binding protein (TBP) into Xenopus oocytes, the block in transcription can be partially overcome. [10] The hypothesis that shortened cell cycles can cause repression of transcription is supported by the observation that mitosis causes transcription to cease. [11] The generally accepted mechanism for the initiation of embryonic gene regulatory networks in mammals is that there are multiple waves of MZT. In mouse, the first of these occurs in the zygote, where expression of a few pioneering transcription factors gradually increases the expression of target genes downstream. This induction of genes leads to a second major MZT event [12]

Clearing of maternal transcripts

To eliminate the contribution of maternal gene products to development, maternally-supplied mRNAs must be degraded in the embryo. Studies in Drosophila have shown that sequences in the 3' UTR of maternal transcripts mediate their degradation [13] These sequences are recognized by regulatory proteins that cause destabilization or degradation of the transcripts. Recent studies in both zebrafish and Xenopus have found evidence of a role for microRNAs in degradation of maternal transcripts. In zebrafish, the microRNA miR-430 is expressed at the onset of zygotic transcription and targets several hundred mRNAs for deadenylation and degradation. Many of these targets are genes that are expressed maternally. [14] Similarly, in Xenopus , the miR-430 ortholog miR-427 has been shown to target maternal mRNAs for deadenylation. Specifically, miR-427 targets include cell cycle regulators such as Cyclin A1 and Cyclin B2. [15]

Related Research Articles

<span class="mw-page-title-main">Enhancer (genetics)</span> DNA sequence that binds activators to increase the likelihood of gene transcription

In genetics, an enhancer is a short region of DNA that can be bound by proteins (activators) to increase the likelihood that transcription of a particular gene will occur. These proteins are usually referred to as transcription factors. Enhancers are cis-acting. They can be located up to 1 Mbp away from the gene, upstream or downstream from the start site. There are hundreds of thousands of enhancers in the human genome. They are found in both prokaryotes and eukaryotes.

<span class="mw-page-title-main">Blastulation</span> Sphere of cells formed during early embryonic development in animals

Blastulation is the stage in early animal embryonic development that produces the blastula. In mammalian development the blastula develops into the blastocyst with a differentiated inner cell mass and an outer trophectoderm. The blastula is a hollow sphere of cells known as blastomeres surrounding an inner fluid-filled cavity called the blastocoel. Embryonic development begins with a sperm fertilizing an egg cell to become a zygote, which undergoes many cleavages to develop into a ball of cells called a morula. Only when the blastocoel is formed does the early embryo become a blastula. The blastula precedes the formation of the gastrula in which the germ layers of the embryo form.

An oocyte, oöcyte, or ovocyte is a female gametocyte or germ cell involved in reproduction. In other words, it is an immature ovum, or egg cell. An oocyte is produced in a female fetus in the ovary during female gametogenesis. The female germ cells produce a primordial germ cell (PGC), which then undergoes mitosis, forming oogonia. During oogenesis, the oogonia become primary oocytes. An oocyte is a form of genetic material that can be collected for cryoconservation.

<i>Drosophila</i> embryogenesis Embryogenesis of the fruit fly Drosophila, a popular model system

Drosophila embryogenesis, the process by which Drosophila embryos form, is a favorite model system for genetics and developmental biology. The study of its embryogenesis unlocked the century-long puzzle of how development was controlled, creating the field of evolutionary developmental biology. The small size, short generation time, and large brood size make it ideal for genetic studies. Transparent embryos facilitate developmental studies. Drosophila melanogaster was introduced into the field of genetic experiments by Thomas Hunt Morgan in 1909.

The RNA-induced silencing complex, or RISC, is a multiprotein complex, specifically a ribonucleoprotein, which functions in gene silencing via a variety of pathways at the transcriptional and translational levels. Using single-stranded RNA (ssRNA) fragments, such as microRNA (miRNA), or double-stranded small interfering RNA (siRNA), the complex functions as a key tool in gene regulation. The single strand of RNA acts as a template for RISC to recognize complementary messenger RNA (mRNA) transcript. Once found, one of the proteins in RISC, Argonaute, activates and cleaves the mRNA. This process is called RNA interference (RNAi) and it is found in many eukaryotes; it is a key process in defense against viral infections, as it is triggered by the presence of double-stranded RNA (dsRNA).

Hox genes, a subset of homeobox genes, are a group of related genes that specify regions of the body plan of an embryo along the head-tail axis of animals. Hox proteins encode and specify the characteristics of 'position', ensuring that the correct structures form in the correct places of the body. For example, Hox genes in insects specify which appendages form on a segment, and Hox genes in vertebrates specify the types and shape of vertebrae that will form. In segmented animals, Hox proteins thus confer segmental or positional identity, but do not form the actual segments themselves.

Cyclin A is a member of the cyclin family, a group of proteins that function in regulating progression through the cell cycle. The stages that a cell passes through that culminate in its division and replication are collectively known as the cell cycle Since the successful division and replication of a cell is essential for its survival, the cell cycle is tightly regulated by several components to ensure the efficient and error-free progression through the cell cycle. One such regulatory component is cyclin A which plays a role in the regulation of two different cell cycle stages.

<i>Krüppel</i>

Krüppel is a gap gene in Drosophila melanogaster, located on the 2R chromosome, which encodes a zinc finger C2H2 transcription factor. Gap genes work together to establish the anterior-posterior segment patterning of the insect through regulation of the transcription factor encoding pair rule genes. These genes in turn regulate segment polarity genes. Krüppel means "cripple" in German, named for the crippled appearance of mutant larvae, who have failed to develop proper thoracic and anterior segments in the abdominal region. Mutants can also have abdominal mirror duplications.

In developmental biology, midblastula or midblastula transition (MBT) occurs during the blastula stage of embryonic development in non-mammals. During this stage, the embryo is referred to as a blastula. The series of changes to the blastula that characterize the midblastula transition include activation of zygotic gene transcription, slowing of the cell cycle, increased asynchrony in cell division, and an increase in cell motility.

Douglas A. Melton is the Xander University Professor at Harvard University, and was an investigator at the Howard Hughes Medical Institute until 2022. Moreover, Melton serves as the co-director of the Harvard Stem Cell Institute and was the first co-chairman of the Harvard University Department of Stem Cell and Regenerative Biology. Melton is the founder of several biotech companies including Gilead Sciences, Ontogeny, iPierian, and Semma Therapeutics. Melton holds membership in the National Academy of the Sciences, the American Academy of Arts and Sciences, and is a founding member of the International Society for Stem Cell Research.

In early Drosophila development, the first 13 cells pass through mitosis are nuclear divisions (karyokinesis) without cytokinesis, resulting in a multinucleate cell. Pole cells are the cells that form at the polar ends of the Drosophila egg, which begin the adult germ cells. Pole plasm functions to bud the development of pole cells, as well as restore fertilization, even when the cell was previously sterile.

<span class="mw-page-title-main">PBX1</span> Protein found in humans

Pre-B-cell leukemia transcription factor 1 is a protein that in humans is encoded by the PBX1 gene. The homologous protein in Drosophila is known as extradenticle, and causes changes in embryonic development.

<span class="mw-page-title-main">CUGBP1</span> Protein-coding gene in the species Homo sapiens

CUG triplet repeat, RNA binding protein 1, also known as CUGBP1, is a protein which in humans is encoded by the CUGBP1 gene.

<span class="mw-page-title-main">Homeobox protein goosecoid</span> Protein-coding gene in the species Homo sapiens

Homeobox protein goosecoid(GSC) is a homeobox protein that is encoded in humans by the GSC gene. Like other homeobox proteins, goosecoid functions as a transcription factor involved in morphogenesis. In Xenopus, GSC is thought to play a crucial role in the phenomenon of the Spemann-Mangold organizer. Through lineage tracing and timelapse microscopy, the effects of GSC on neighboring cell fates could be observed. In an experiment that injected cells with GSC and observed the effects of uninjected cells, GSC recruited neighboring uninjected cells in the dorsal blastopore lip of the Xenopus gastrula to form a twinned dorsal axis, suggesting that the goosecoid protein plays a role in the regulation and migration of cells during gastrulation.

In molecular biology mir-430 microRNA is a short RNA molecule. MicroRNAs function to regulate the expression levels of other genes by several mechanisms.

<i>Homeotic protein bicoid</i> Protein-coding gene in the species Drosophila melanogaster

Homeotic protein bicoid is encoded by the bcd maternal effect gene in Drosophilia. Homeotic protein bicoid concentration gradient patterns the anterior-posterior (A-P) axis during Drosophila embryogenesis. Bicoid was the first protein demonstrated to act as a morphogen. Although bicoid is important for the development of Drosophila and other higher dipterans, it is absent from most other insects, where its role is accomplished by other genes.

Vrille (vri) is a bZIP transcription factor found on chromosome 2 in Drosophila melanogaster. Vrille mRNA and protein product (VRI) oscillate predictably on a 24-hour timescale and interact with other circadian clock genes to regulate circadian rhythms in Drosophila. It is also a regulator in embryogenesis; it is expressed in multiple cell types during multiple stages in development, coordinating embryonic dorsal/ventral polarity, wing-vein differentiation, and ensuring tracheal integrity. It is also active in the embryonic gut but the precise function there is unknown. Mutations in vri alter circadian period and cause circadian arrhythmicity and developmental defects in Drosophila.

<span class="mw-page-title-main">Smaug (protein)</span> RNA-binding protein in Drosophila

Smaug is a RNA-binding protein in Drosophila that helps in maternal to zygotic transition (MZT). The protein is named after the fictional character Smaug, the dragon in J.R.R. Tolkien's 1937 novel The Hobbit. The MZT ends with the midblastula transition (MBT), which is defined as the first developmental event in Drosophila that depends on zygotic mRNA. In Drosophila, the initial developmental events are controlled by maternal mRNAs like Hsp83, nanos, string, Pgc, and cyclin B mRNA. Degradation of these mRNAs, which is expected to terminate maternal control and enable zygotic control of embryogenesis, happens at interphase of nuclear division cycle 14. During this transition smaug protein targets the maternal mRNA for destruction using miRs. Thus activating the zygotic genes. Smaug is expected to play a role in expression of three miRNAs – miR-3, miR-6, miR-309 and miR-286 during MZT in Drosophila. Among them smaug dependent expression of miR-309 is needed for destabilization of 410 maternal mRNAs. In smaug mutants almost 85% of maternal mRNA is found to be stable. Smaug also binds to 3′ untranslated region (UTR) elements known as SMG response elements (SREs) on nanos mRNA and represses its expression by recruiting a protein called Cup(an eIF4E-binding protein that blocks the binding of eIF4G to eIF4E). There after it recruits deadenylation complex CCR4-Not on to the nanos mRNA which leads to deadenylation and subsequent decay of the mRNA. It is also found to be involved in degradation and repression of maternal Hsp83 mRNA by recruiting CCR4/POP2/NOT deadenylase to the mRNA. The human Smaug protein homologs are SAMD4A and SAMD4B.

Antonio Jesus Giraldez is a Spanish developmental biologist and RNA researcher at Yale University School of Medicine, where he serves as chair of the department of genetics and Fergus F. Wallace Professor of Genetics. He is also affiliated with the Yale Cancer Center and the Yale Stem Cell Center.

<span class="mw-page-title-main">Spätzle (gene)</span> Protein found in Drosophila melanogaster

Spätzle or spaetzle is an evolutionarily-conserved arthropod protein first identified in Drosophila melanogaster. It plays a role in embryonic development and in the insect innate immune response. The name was coined by the Nobel laureate Christiane Nüsslein-Volhard after the Spätzle noodle-like form of homozygous mutant fly larvae.

References

  1. Lee MT, Bonneau AR, Takacs CM, Bazzini AA, DiVito KR, Fleming ES, Giraldez AJ (November 2013). "Nanog, Pou5f1 and SoxB1 activate zygotic gene expression during the maternal-to-zygotic transition". Nature. 503 (7476): 360–4. doi:10.1038/nature12632. PMC   3925760 . PMID   24056933.
  2. Schulz KN, Harrison MM (April 2019). "Mechanisms regulating zygotic genome activation". Nat Rev Genet. 20 (4): 221–234. doi:10.1038/s41576-018-0087-x. PMC   6558659 . PMID   30573849.
  3. 1 2 3 4 Baroux C, Autran D, Gillmor CS, et al. (2008). "The Maternal to Zygotic Transition in Animals and Plants". Cold Spring Harb Symp Quant Biol. 73: 89–100. doi: 10.1101/sqb.2008.73.053 . PMID   19204068.
  4. 1 2 Tadros W, Lipshitz HD (2009). "The maternal to zygotic transition: a play in two acts". Development. 136 (18): 3033–42. doi: 10.1242/dev.033183 . PMID   19700615.
  5. 1 2 3 4 Newport J, Kirschner M (1982). "A major developmental transition in early Xenopus embryos: I. characterization and timing of cellular changes at the midblastula stage". Cell. 30 (3): 675–86. doi:10.1016/0092-8674(82)90272-0. PMID   6183003. S2CID   24114437.
  6. Pritchard DK, Schubiger G (1996). "Activation of transcription in Drosophila embryos is a gradual process mediated by the nucleocytoplasmic ratio". Genes Dev. 10 (9): 1131–42. doi: 10.1101/gad.10.9.1131 . PMID   8654928.
  7. Schier AF (2007). "The Maternal-Zygotic Transition: Death and Birth of RNAs". Science. 316 (5823): 406–7. Bibcode:2007Sci...316..406S. doi:10.1126/science.1140693. PMID   17446392. S2CID   36999389.
  8. 1 2 Newport J, Kirschner M (1982). "A major developmental transition in early Xenopus embryos: II. control of the onset of transcription". Cell. 30 (3): 687–96. doi:10.1016/0092-8674(82)90273-2. PMID   7139712. S2CID   25235449.
  9. Lu X, Li JM, Elemento O, Tavazoie S, Wieschaus EF (2009). "Coupling of zygotic transcription to mitotic control at the Drosophila mid-blastula transition". Development. 136 (12): 2101–2110. doi:10.1242/dev.034421. PMC   2685728 . PMID   19465600.
  10. Prioleau MN, Huet J, Sentenac A, Mechali M (1994). "Competition between chromatin and transcription complex assembly regulates gene expression during early development". Cell. 77 (3): 439–49. doi:10.1016/0092-8674(94)90158-9. PMID   8181062. S2CID   1090434.
  11. Shermoen AW, O'Farrell PH (1991). "Progression of the cell cycle through mitosis leads to abortion of nascent transcripts". Cell. 67 (2): 303–10. doi:10.1016/0092-8674(91)90182-X. PMC   2755073 . PMID   1680567.
  12. Xue, Zhigang; Huang, Kevin; Cai, Chaochao; Cai, Lingbo; Jiang, Chun-yan; Feng, Yun; Liu, Zhenshan; Zeng, Qiao; Cheng, Liming; Sun, Yi E.; Liu, Jia-yin; Horvath, Steve; Fan, Guoping (2013). "Genetic programs in human and mouse early embryos revealed by single-cell RNA sequencing". Nature. 500 (7464): 593–597. Bibcode:2013Natur.500..593X. doi:10.1038/nature12364. PMC   4950944 . PMID   23892778.
  13. Tadros W, Lipshitz HD (2005). "Setting the stage for development: mRNA translation and stability during ooccyte maturation and egg activation in Drosophila". Dev Dyn. 232 (3): 593–608. doi: 10.1002/dvdy.20297 . PMID   15704150.
  14. Giraldez AJ, Mishima Y, Rihel J, Grocock RJ, Van Dongen S, Inoue K, Enright AJ, Schier AF (2006). "Zebrafish miR-430 promotes deadenylation and clearance of maternal mRNAs". Science. 312 (5770): 75–9. Bibcode:2006Sci...312...75G. doi:10.1126/science.1122689. PMID   16484454. S2CID   5529357.
  15. Lund E, Liu M, Hartley RS, Sheets MD, Dahlberg JE (2009). "Deadenylation of maternal mRNAs mediated by miR-427 in Xenopus laevis embryos". RNA. 15 (12): 2351–63. doi:10.1261/rna.1882009. PMC   2779678 . PMID   19854872.