Matrix difference equation

Last updated

A matrix difference equation is a difference equation in which the value of a vector (or sometimes, a matrix) of variables at one point in time is related to its own value at one or more previous points in time, using matrices. [1] [2] The order of the equation is the maximum time gap between any two indicated values of the variable vector. For example,

Contents

is an example of a second-order matrix difference equation, in which x is an n × 1 vector of variables and A and B are n × n matrices. This equation is homogeneous because there is no vector constant term added to the end of the equation. The same equation might also be written as

or as

The most commonly encountered matrix difference equations are first-order.

Nonhomogeneous first-order case and the steady state

An example of a nonhomogeneous first-order matrix difference equation is

with additive constant vector b. The steady state of this system is a value x* of the vector x which, if reached, would not be deviated from subsequently. x* is found by setting xt = xt−1 = x* in the difference equation and solving for x* to obtain

where I is the n × n identity matrix, and where it is assumed that [IA] is invertible. Then the nonhomogeneous equation can be rewritten in homogeneous form in terms of deviations from the steady state:

Stability of the first-order case

The first-order matrix difference equation [xtx*] = A[xt−1x*] is stable that is, xt converges asymptotically to the steady state x*if and only if all eigenvalues of the transition matrix A (whether real or complex) have an absolute value which is less than 1.

Solution of the first-order case

Assume that the equation has been put in the homogeneous form yt = Ayt−1. Then we can iterate and substitute repeatedly from the initial condition y0, which is the initial value of the vector y and which must be known in order to find the solution:

and so forth, so that by mathematical induction the solution in terms of t is

Further, if A is diagonalizable, we can rewrite A in terms of its eigenvalues and eigenvectors, giving the solution as

where P is an n × n matrix whose columns are the eigenvectors of A (assuming the eigenvalues are all distinct) and D is an n × n diagonal matrix whose diagonal elements are the eigenvalues of A. This solution motivates the above stability result: At shrinks to the zero matrix over time if and only if the eigenvalues of A are all less than unity in absolute value.

Extracting the dynamics of a single scalar variable from a first-order matrix system

Starting from the n-dimensional system yt = Ayt−1, we can extract the dynamics of one of the state variables, say y1. The above solution equation for yt shows that the solution for y1,t is in terms of the n eigenvalues of A. Therefore the equation describing the evolution of y1 by itself must have a solution involving those same eigenvalues. This description intuitively motivates the equation of evolution of y1, which is

where the parameters ai are from the characteristic equation of the matrix A:

Thus each individual scalar variable of an n-dimensional first-order linear system evolves according to a univariate nth-degree difference equation, which has the same stability property (stable or unstable) as does the matrix difference equation.

Solution and stability of higher-order cases

Matrix difference equations of higher orderthat is, with a time lag longer than one periodcan be solved, and their stability analyzed, by converting them into first-order form using a block matrix (matrix of matrices). For example, suppose we have the second-order equation

with the variable vector x being n × 1 and A and B being n × n. This can be stacked in the form

where I is the n × n identity matrix and 0 is the n × n zero matrix. Then denoting the 2n × 1 stacked vector of current and once-lagged variables as zt and the 2n × 2n block matrix as L, we have as before the solution

Also as before, this stacked equation, and thus the original second-order equation, are stable if and only if all eigenvalues of the matrix L are smaller than unity in absolute value.

Nonlinear matrix difference equations: Riccati equations

In linear-quadratic-Gaussian control, there arises a nonlinear matrix equation for the reverse evolution of a current-and-future-cost matrix, denoted below as H. This equation is called a discrete dynamic Riccati equation, and it arises when a variable vector evolving according to a linear matrix difference equation is controlled by manipulating an exogenous vector in order to optimize a quadratic cost function. This Riccati equation assumes the following, or a similar, form:

where H, K, and A are n × n, C is n × k, R is k × k, n is the number of elements in the vector to be controlled, and k is the number of elements in the control vector. The parameter matrices A and C are from the linear equation, and the parameter matrices K and R are from the quadratic cost function. See here for details.

In general this equation cannot be solved analytically for Ht in terms of t; rather, the sequence of values for Ht is found by iterating the Riccati equation. However, it has been shown [3] that this Riccati equation can be solved analytically if R = 0 and n = k + 1, by reducing it to a scalar rational difference equation; moreover, for any k and n if the transition matrix A is nonsingular then the Riccati equation can be solved analytically in terms of the eigenvalues of a matrix, although these may need to be found numerically. [4]

In most contexts the evolution of H backwards through time is stable, meaning that H converges to a particular fixed matrix H* which may be irrational even if all the other matrices are rational. See also Stochastic control § Discrete time.

A related Riccati equation [5] is

in which the matrices X, A, B, C, E are all n × n. This equation can be solved explicitly. Suppose which certainly holds for t = 0 with N0 = X0 and with D0 = I . Then using this in the difference equation yields

so by induction the form holds for all t. Then the evolution of N and D can be written as

Thus by induction

See also

Related Research Articles

In mathematics, a matrix with real entries is positive-definite if the real number is positive for every nonzero real column vector where is the transpose of . More generally, a Hermitian matrix is positive-definite if the real number is positive for every nonzero complex column vector where denotes the conjugate transpose of

<span class="mw-page-title-main">System of linear equations</span> Several equations of degree 1 to be solved simultaneously

In mathematics, a system of linear equations is a collection of one or more linear equations involving the same variables.

<span class="mw-page-title-main">Singular value decomposition</span> Matrix decomposition

In linear algebra, the singular value decomposition (SVD) is a factorization of a real or complex matrix. It generalizes the eigendecomposition of a square normal matrix with an orthonormal eigenbasis to any matrix. It is related to the polar decomposition.

Ray transfer matrix analysis is a mathematical form for performing ray tracing calculations in sufficiently simple problems which can be solved considering only paraxial rays. Each optical element is described by a 2×2 ray transfer matrix which operates on a vector describing an incoming light ray to calculate the outgoing ray. Multiplication of the successive matrices thus yields a concise ray transfer matrix describing the entire optical system. The same mathematics is also used in accelerator physics to track particles through the magnet installations of a particle accelerator, see electron optics.

In linear algebra, a diagonal matrix is a matrix in which the entries outside the main diagonal are all zero; the term usually refers to square matrices. Elements of the main diagonal can either be zero or nonzero. An example of a 2×2 diagonal matrix is , while an example of a 3×3 diagonal matrix is. An identity matrix of any size, or any multiple of it, is a diagonal matrix.

In linear algebra, a square matrix with complex entries is said to be skew-Hermitian or anti-Hermitian if its conjugate transpose is the negative of the original matrix. That is, the matrix is skew-Hermitian if it satisfies the relation

In control engineering, a state-space representation is a mathematical model of a physical system as a set of input, output and state variables related by first-order differential equations or difference equations. State variables are variables whose values evolve over time in a way that depends on the values they have at any given time and on the externally imposed values of input variables. Output variables’ values depend on the values of the state variables.

In mathematics, the matrix exponential is a matrix function on square matrices analogous to the ordinary exponential function. It is used to solve systems of linear differential equations. In the theory of Lie groups, the matrix exponential gives the exponential map between a matrix Lie algebra and the corresponding Lie group.

In linear algebra, linear transformations can be represented by matrices. If is a linear transformation mapping to and is a column vector with entries, then

In linear algebra, a rotation matrix is a transformation matrix that is used to perform a rotation in Euclidean space. For example, using the convention below, the matrix

In mathematics, the kernel of a linear map, also known as the null space or nullspace, is the linear subspace of the domain of the map which is mapped to the zero vector. That is, given a linear map L : VW between two vector spaces V and W, the kernel of L is the vector space of all elements v of V such that L(v) = 0, where 0 denotes the zero vector in W, or more symbolically:

In mathematics, matrix calculus is a specialized notation for doing multivariable calculus, especially over spaces of matrices. It collects the various partial derivatives of a single function with respect to many variables, and/or of a multivariate function with respect to a single variable, into vectors and matrices that can be treated as single entities. This greatly simplifies operations such as finding the maximum or minimum of a multivariate function and solving systems of differential equations. The notation used here is commonly used in statistics and engineering, while the tensor index notation is preferred in physics.

<span class="mw-page-title-main">Phase plane</span> Visual representation used in non-linear control system analysis

In applied mathematics, in particular the context of nonlinear system analysis, a phase plane is a visual display of certain characteristics of certain kinds of differential equations; a coordinate plane with axes being the values of the two state variables, say, or etc.. It is a two-dimensional case of the general n-dimensional phase space.

In linear algebra, an eigenvector or characteristic vector of a linear transformation is a nonzero vector that changes at most by a scalar factor when that linear transformation is applied to it. The corresponding eigenvalue, often denoted by , is the factor by which the eigenvector is scaled.

In linear algebra, an idempotent matrix is a matrix which, when multiplied by itself, yields itself. That is, the matrix is idempotent if and only if . For this product to be defined, must necessarily be a square matrix. Viewed this way, idempotent matrices are idempotent elements of matrix rings.

In linear algebra, a coefficient matrix is a matrix consisting of the coefficients of the variables in a set of linear equations. The matrix is used in solving systems of linear equations.

In linear algebra, eigendecomposition is the factorization of a matrix into a canonical form, whereby the matrix is represented in terms of its eigenvalues and eigenvectors. Only diagonalizable matrices can be factorized in this way. When the matrix being factorized is a normal or real symmetric matrix, the decomposition is called "spectral decomposition", derived from the spectral theorem.

A differential equation is a mathematical equation for an unknown function of one or several variables that relates the values of the function itself and its derivatives of various orders. A matrix differential equation contains more than one function stacked into vector form with a matrix relating the functions to their derivatives.

<span class="mw-page-title-main">Matrix (mathematics)</span> Two-dimensional array of numbers

In mathematics, a matrix is a rectangular array or table of numbers, symbols, or expressions, arranged in rows and columns, which is used to represent a mathematical object or a property of such an object.

In mathematics, the matrix sign function is a matrix function on square matrices analogous to the complex sign function.

References

  1. Cull, Paul; Flahive, Mary; Robson, Robbie (2005). Difference Equations: From Rabbits to Chaos. Springer. ch. 7. ISBN   0-387-23234-6.
  2. Chiang, Alpha C. (1984). Fundamental Methods of Mathematical Economics (3rd ed.). McGraw-Hill. pp.  608–612. ISBN   9780070107809.
  3. Balvers, Ronald J.; Mitchell, Douglas W. (2007). "Reducing the dimensionality of linear quadratic control problems" (PDF). Journal of Economic Dynamics and Control. 31 (1): 141–159. doi:10.1016/j.jedc.2005.09.013.
  4. Vaughan, D. R. (1970). "A nonrecursive algebraic solution for the discrete Riccati equation". IEEE Transactions on Automatic Control. 15 (5): 597–599. doi:10.1109/TAC.1970.1099549.
  5. Martin, C. F.; Ammar, G. (1991). "The geometry of the matrix Riccati equation and associated eigenvalue method". In Bittani; Laub; Willems (eds.). The Riccati Equation. Springer-Verlag. doi:10.1007/978-3-642-58223-3_5. ISBN   978-3-642-63508-3.