Mecke reagent

Last updated

The Mecke reagent is used as a simple spot-test to presumptively identify alkaloids as well as other compounds. It is composed of a mixture of selenous acid and concentrated sulfuric acid, [1] which is dripped onto the substance being tested.

Contents

The United States Department of Justice method for producing the reagent is the addition of 100 mL of concentrated (95–98%) sulfuric acid to 1 g of selenous acid. While sale to the general public is legal, it is not recommended as strong corrosive's can cause permanent skin and eye damage and require extensive safety ratings. [2]

Final colors produced by Mecke Reagent with various substances [2]
SubstanceColor
Chlorpromazine Blackish red
Codeine Very dark bluish green
Diacetylmorphine (Heroin)Deep bluish green
DMMADark brown
Doxepin Very dark red
DristanLight olive brown
Exedrine Dark greyish yellow
LSD Greenish black
Mace Dark greyish olive
Methylenedioxyamphetamine (MDA)Very dark blue
Mescaline Moderate olive
Morphine monohydrateVery dark bluish green
Opium Olive black
Oxycodone Moderate olive
Propoxyphene Deep reddish brown
PMMA Pale olive green [3]
PMA Pale olive green [3] or light green [4]
Sugar Brilliant greenish yellow

See also

Related Research Articles

<span class="mw-page-title-main">Oleum</span> Corrosive liquid of excess sulfur trioxide in solution.

Oleum, or fuming sulfuric acid, is a term referring to solutions of various compositions of sulfur trioxide in sulfuric acid, or sometimes more specifically to disulfuric acid. Oleum is identified by the CAS number 8014-95-7.

Marquis reagent is used as a simple spot-test to presumptively identify alkaloids as well as other compounds. It is composed of a mixture of formaldehyde and concentrated sulfuric acid, which is dripped onto the substance being tested. The United States Department of Justice method for producing the reagent is the addition of 100 mL of concentrated (95–98%) sulfuric acid to 5 mL of 40% formaldehyde. Different compounds produce different color reactions. Methanol may be added to slow down the reaction process to allow better observation of the colour change.

<span class="mw-page-title-main">Potassium permanganate</span> Chemical compound

Potassium permanganate is an inorganic compound with the chemical formula KMnO4. It is a purplish-black crystalline salt, that dissolves in water as K+ and MnO
4
, an intensely pink to purple solution.

Sulfur trioxide (alternative spelling sulphur trioxide, also known as nisso sulfan) is the chemical compound with the formula SO3. It has been described as "unquestionably the most important economically" sulfur oxide. It is prepared on an industrial scale as a precursor to sulfuric acid.

<span class="mw-page-title-main">Molisch's test</span>

Molisch's test is a sensitive chemical test, named after Austrian botanist Hans Molisch, for the presence of carbohydrates, based on the dehydration of the carbohydrate by sulfuric acid or hydrochloric acid to produce an aldehyde, which condenses with two molecules of a phenol, resulting in a violet ring.

Selenic acid is the inorganic compound with the formula H2SeO4. It is an oxoacid of selenium, and its structure is more accurately described as O2Se(OH)2. It is a colorless compound. Although it has few uses, one of its salts, sodium selenate is used in the production of glass and animal feeds.

<span class="mw-page-title-main">Selenium dioxide</span> Chemical compound

Selenium dioxide is the chemical compound with the formula SeO2. This colorless solid is one of the most frequently encountered compounds of selenium.

<span class="mw-page-title-main">Selenous acid</span> Chemical compound

Selenous acid is the chemical compound with the formula H2SeO3. Structurally, it is more accurately described by O=Se(OH)2. It is the principal oxoacid of selenium; the other being selenic acid.

<span class="mw-page-title-main">Selenium compounds</span> Chemical compounds containing selenium

Selenium compounds commonly exist in the oxidation states −2, +2, +4, and +6.

<span class="mw-page-title-main">Reagent testing</span> Tests for authentication of psychoactive drugs, and detection of adulterants

Reagent testing is one of the processes used to identify substances contained within a pill, usually illicit substances. With the increased prevalence of drugs being available in their pure forms, the terms "drug checking" or "pill testing" may also be used, although these terms usually refer to testing with a wider variety of techniques covered by drug checking.

<span class="mw-page-title-main">Folin's reagent</span> Chemical compound

Folin's reagent or sodium 1,2-naphthoquinone-4-sulfonate is a chemical reagent used as a derivatizing agent to measure levels of amines and amino acids. The reagent reacts with them in alkaline solution to produce a fluorescent material that can be easily detected.

Ehrlich's reagent or Ehrlich reagent is a reagent containing p-dimethylaminobenzaldehyde (DMAB) and thus can act as an indicator to presumptively identify indoles and urobilinogen. Several Ehrlich tests use the reagent in a medical test; some are drug tests and others contribute to diagnosis of various diseases or adverse drug reactions. It is named after Nobel Prize winner Paul Ehrlich who used it to distinguish typhoid from simple diarrhoea.

The Liebermann reagent named after Hungarian chemist Leo Liebermann (1852-1926) is used as a simple spot-test to presumptively identify alkaloids as well as other compounds. It is composed of a mixture of potassium nitrite and concentrated sulfuric acid. 1 g of potassium nitrite is used for every 10 mL of sulfuric acid. Potassium nitrite may also be substituted by sodium nitrite. It is used to test for cocaine, morphine, PMA and PMMA.

The Mandelin reagent is used as a simple spot-test to presumptively identify alkaloids as well as other compounds. It is composed of a mixture of ammonium metavanadate and concentrated sulfuric acid. Its primary use is for the detection of ketamine and PMA Unlike the most common reagent test chemicals, it has a deep red colour that changes to yellow if there is no alkaloid, which occurs within about 48 hours of mixing.

Simon's reagent is used as a simple spot-test to presumptively identify alkaloids as well as other compounds. It reacts with secondary amines like MDMA and methamphetamine to give a blue solution.

The Froehde reagent is used as a simple spot-test to presumptively identify alkaloids, especially opioids, as well as other compounds. It is composed of a mixture of molybdic acid or a molybdate salt dissolved in hot, concentrated sulfuric acid, which is then dripped onto the substance being tested.

The Gallic acid reagent is used as a simple spot-test to presumptively identify drug precursor chemicals. It is composed of a mixture of gallic acid and concentrated sulfuric acid.

<span class="mw-page-title-main">Chen-Kao reaction</span>

The Chen-Kao reaction is a chemical method for determining the presence of pseudoephedrine, ephedrine, and similar phenylalkylamines. The reaction is used in spot tests and is also known as Chen-Kao test. The test is often used to distinguish ephedrine, pseudoephedrine, norephedrine, cathinone and methcathinone from amphetamine and methamphetamine, which do not react with Chen’s test reagent.

Salkowski's test, also known simply as Salkowski test, is a qualitative chemical test, that is used in chemistry and biochemistry for detecting a presence of cholesterol and other sterols. This biochemical method got its name after German biochemist Ernst Leopold Salkowski, who is known for development of multiple new chemical tests, that are used for detection of different kinds of molecules. A solution that has tested positive on the Salkowski's test becomes red and gets yellow glow.

References

  1. "Mecke Reagent Testing Kit (Red Label)". Dancesafe. Archived from the original on 2012-01-24. Retrieved 2012-01-26.
  2. 1 2 "Color Test Reagents/Kits for Preliminary Identification of Drugs of Abuse" (PDF). Law Enforcement and Corrections Standards and Testing Program. July 2000. Retrieved 2011-07-24.
  3. 1 2 EMCDDA (30 Mar 2011). EMCDDA Risk Assessment: Report on the Risk Assessment of PMMA in the Framework of the Joint Action on New Synthetic Drugs. Dictus Publishing. p. 54. ISBN   978-3-8433-2695-7 . Retrieved 2012-01-25.
  4. "Clarke's Analysis of Drugs and Poisons". Pharmaceutical Press. 2011. doi:10.1080/00450618.2011.620006. ISBN   978-0-85369-711-4. S2CID   71790993.