Membrane models

Last updated

Before the emergence of electron microscopy in the 1950s, scientists did not know the structure of a cell membrane or what its components were; biologists and other researchers used indirect evidence to identify membranes before they could actually be visualized. Specifically, it was through the models of Overton, Langmuir, Gorter and Grendel, and Davson and Danielli, that it was deduced that membranes have lipids, proteins, and a bilayer. The advent of the electron microscope, the findings of J. David Robertson, the proposal of Singer and Nicolson, and additional work of Unwin and Henderson all contributed to the development of the modern membrane model. However, understanding of past membrane models elucidates present-day perception of membrane characteristics. Following intense experimental research, the membrane models of the preceding century gave way to the fluid mosaic model that is generally accepted as a partial description.

Contents

Gorter and Grendel's membrane theory (1925)

Diagram of the arrangement of amphipathic lipid molecules to form a lipid bilayer. The yellow polar head groups separate the grey hydrophobic tails from the aqueous cytosolic and extracellular environments. Fluid Mosaic.svg
Diagram of the arrangement of amphipathic lipid molecules to form a lipid bilayer. The yellow polar head groups separate the grey hydrophobic tails from the aqueous cytosolic and extracellular environments.
Merhaba dünya  

Evert Gorter and François Grendel (Dutch physiologists) approached the discovery of our present model of the plasma membrane structure as a lipid bi-layer. They simply hypothesized that if the plasma membrane is a bi-layer, then the surface area of the mono-layer of lipids measured would be double the surface area of the plasma membrane. To examine their hypothesis, they performed an experiment in which they extracted lipids from a known number of red blood cells (erythrocytes) of different mammalian sources, such as humans, goats, sheep, etc. and then spreading the lipids as a mono-layer in a Langmuir-Blodgett trough. They measured the total surface area of the plasma membrane of red blood cells, and using Langmuir's method, they measured the area of the monolayer of lipids. In comparing the two, they calculated an estimated ratio of 2:1 Mono-layer of lipids: Plasma membrane. This supported their hypothesis, which led to the conclusion that cell membranes are composed of two opposing molecular layers. [1] The two scientists proposed a structure for this bi-layer, with the polar hydrophilic heads facing outwards towards the aqueous environment and the hydrophobic tails facing inwards away from the aqueous surroundings on both sides of the membrane. Although they arrived at the right conclusions, some of the experimental data were incorrect such as the miscalculation of the area and pressure of the lipid monolayer and the incompleteness of lipid extraction. They also failed to describe membrane function and had false assumptions such as that of plasma membranes consisting mostly of lipids. However, on the whole, this envisioning of the lipid bi-layer structure became the basic underlying assumption for each successive refinement in a modern understanding of membrane function. [2]

The Davson and Danielli model with backup from Robertson (1940–1960)

Following the proposal of Gorter and Grendel, doubts inevitably arose over the veracity of having just a simple lipid bi-layer as a membrane. For instance, their model could not provide answers to questions on surface tension, permeability, and the electric resistance of membranes. Therefore, physiologist Hugh Davson and biologist James Danielli suggested that membranes indeed do have proteins. According to them, the existence of these "membrane proteins" explained that which couldn't be answered by the Gorter-Grendel model.

In 1935, Davson and Danielli proposed that biological membranes are made up of lipid bi-layers that are coated on both sides with thin sheets of protein and they simplified their model into the "pauci-molecular" theory. [3] This theory declared that all biological membranes have a "lipoid" center surrounded by mono-layers of lipid that are covered by protein mono-layers. In short, their model was illustrated as a "sandwich" of protein-lipid-protein. The Davson-Danielli model threw new light on the understanding of cell membranes, by stressing the important role played by proteins in biological membranes.

By the 1950s, cell biologists verified the existence of plasma membranes through the use of electron microscopy (which accounted for higher resolutions). J. David Robertson used this method to propose the unit membrane model. [4] Basically, he suggested that all cellular membranes share a similar underlying structure, the unit membrane. Using heavy metal staining, Robertson's proposal also seemed to agree instantaneously with the Davson-Danielli model. According to the trilaminar pattern of the cellular membrane viewed by Robertson, he suggested that the membranes consist of a lipid bi-layer covered on both surfaces with thin sheets of proteins(mucoprotiens). This suggestion was a great boost to the proposal of Davson and Danielli. [5] However, even with Robertson's substantiation, the Davson-Danielli model had serious complications, a major one being that the proteins studied were mainly globular and couldn't therefore fit into the model's claim of thin protein sheets. These difficulties with the model stimulated new research in membrane organization and paved the way for the fluid mosaic model, which was proposed in 1972.

Singer and Nicolson's fluid mosaic model (1972)

In 1972, S. Jonathan Singer and Garth Nicolson developed new ideas for membrane structure. Their proposal was the fluid mosaic model , which is one of the dominant models now. It has two key features—a mosaic of proteins embedded in the membrane, and the membrane being a fluid bi-layer of lipids. The lipid bi-layer suggestion agrees with previous models but views proteins as globular entities embedded in the layer instead of thin sheets on the surface.

According to the model, membrane proteins are in three classes based on how they are linked to the lipid bi-layer:

  1. Integral proteins: Immersed in the bi-layer and held in place by the affinity of hydrophobic parts of the protein for the hydrophobic tails of phospholipids on interior of the layer.
  2. Peripheral proteins: More hydrophilic, and thus are non-covalently linked to the polar heads of phospholipids and other hydrophilic parts of other membrane proteins on the surface of the membrane.
  3. Lipid anchored proteins: Essentially hydrophilic, so, are also located on the surface of the membrane, and are covalently attached to lipid molecules embedded in the layer.

As for the fluid nature of the membrane, the lipid components are capable of moving parallel to the membrane surface and are in constant motion. Many proteins are also capable of that motion within the membrane. However, some are restricted in their mobility due to them being anchored to structural elements such as the cytoskeleton on either side of the membrane.

In general, this model explains most of the criticisms of the Davson–Danielli model. It eliminated the need to accommodate membrane proteins in thin surface layers, proposed that the variability in the protein/lipid ratios of different membranes simply means that different membranes vary in the amount of protein they contain, and showed how the exposure of lipid-head groups at the membrane surface is compatible with their sensitivity to phospholipase digestion. Also, the fluidity of the lipid bi-layers and the intermingling of their components within the membrane make it easy to visualize the mobility of both lipids and proteins.

Singer and Nicolson's fluid mosaic model Cell membrane detailed diagram en.svg
Singer and Nicolson's fluid mosaic model

Henderson and Unwin's membrane theory

Transient receptor potential cation channel subfamily V member 1 (TRPV1). Ion channels are integral membrane proteins of great importance for living organisms. Trpv1 pip2 bilayer.png
Transient receptor potential cation channel subfamily V member 1 (TRPV1). Ion channels are integral membrane proteins of great importance for living organisms.

Henderson and Unwin have studied the purple membrane by electron microscopy, using a method for determining the projected structures of unstained crystalline specimens. By applying the method to tilted specimens, and using the principles put forward by DeRosier and Klug for the combination of such two-dimensional views, they obtained a 3-dimensional map of the membrane at 7 Å resolution. The map reveals the location of the protein and lipid components, the arrangement of the polypeptide chains within each protein molecule, and the relationship of the protein molecules in the lattice. [6]

High-resolution micrographs of crystalline arrays of membrane proteins, taken at a low dose of electrons to minimize radiation damage, have been exploited to determine the three-dimensional structure by a Fourier transform. Recent studies on negatively stained rat hepatocyte Gap™ junctions subjected to 3-dimensional Fourier reconstructions (of low-dose electron micrographs) indicate that the six protein sub-units are arranged in a cylinder slightly tilted tangentially, enclosing a channel 2 nm wide at the extracellular region. The dimensions of the channel within the membrane were narrower but could not be resolved (Unwin and Zampighi, 1980). A small radical movement of the sub-units at the cytoplasmic ends could reduce the sub-unit inclination tangential to six-fold axis and close the channel. [7]

Further details of the molecular organization should emerge as more methods of preparation become available, so that high-resolution 3-dimensional images comparable to the purple membranes are obtained. By using ingenious procedures for the analysis of periodic arrays of biological macromolecules, in which data from low-dose electron images and diffraction patterns were combined, Henderson and Unwin (1975) reconstructed a three-dimensional image of purple membranes at 0.7 nm resolution. Glucose embedding was employed to alleviate dehydration damage and low doses (< 0.5 e/A*) to reduce the irradiation damage. The electron micrographs of unstained membranes were recorded such that the only source of contrast was a weak phase contrast induced by defocusing.

In their experiment, Unwin and Henderson found that protein extends to both sides of the lipid bi-layer and is composed of seven α-helices packed about 1–1.2 nm apart, 3.5–4.0 nm in length, running perpendicular to the plane of membrane. The molecules are organized around a 3-fold axis with a 2 nm-wide space at the center that is filled with lipids. This elegant work represents the most significant step forward thus far, as it has for the first time provided us with the structure of an integral membrane protein in situ. The availability of the amino acid sequence, together with information about the electron scattering density from the work of Henderson and Unwin, has stimulated model-building efforts (Engleman et al., 1980) to fit the bacteriorhodopsin sequence information into a series of α-helical segments.

Kervin and Overduin's proteolipid code (2024)

Building on the fluid mosaic model, a framework called the proteolipid code was proposed in order to explain membrane organization. [8] The proteolipid code relies on the concept of a zone, which is a functional region of membrane that is assembled and stabilized with both protein and lipid dependency. Integral and lipid-anchored proteins are proposed to form three types of zones: proteins with an associated lipid fingerprint, [9] protein islands, and lipid-only voids. Although the latter do not contain proteins as part of their internal particle set or primary structure, they do contain proteins in their quaternary association with the former two zone types which influence the composition of the void. The idea that lipids can cluster independently of proteins through lipid-lipid interactions and then recruit integral proteins is forbidden in the framework, although protein-independent lipid clustering is allowed and is designated as zone secondary structure.

See also

Related Research Articles

<span class="mw-page-title-main">Biological membrane</span> Enclosing or separating membrane in organisms acting as selective semi-permeable barrier

A biological membrane, biomembrane or cell membrane is a selectively permeable membrane that separates the interior of a cell from the external environment or creates intracellular compartments by serving as a boundary between one part of the cell and another. Biological membranes, in the form of eukaryotic cell membranes, consist of a phospholipid bilayer with embedded, integral and peripheral proteins used in communication and transportation of chemicals and ions. The bulk of lipids in a cell membrane provides a fluid matrix for proteins to rotate and laterally diffuse for physiological functioning. Proteins are adapted to high membrane fluidity environment of the lipid bilayer with the presence of an annular lipid shell, consisting of lipid molecules bound tightly to the surfac of integral membrane proteins. The cell membranes are different from the isolating tissues formed by layers of cells, such as mucous membranes, basement membranes, and serous membranes.

<span class="mw-page-title-main">Endomembrane system</span> Membranes in the cytoplasm of a eukaryotic cell

The endomembrane system is composed of the different membranes (endomembranes) that are suspended in the cytoplasm within a eukaryotic cell. These membranes divide the cell into functional and structural compartments, or organelles. In eukaryotes the organelles of the endomembrane system include: the nuclear membrane, the endoplasmic reticulum, the Golgi apparatus, lysosomes, vesicles, endosomes, and plasma (cell) membrane among others. The system is defined more accurately as the set of membranes that forms a single functional and developmental unit, either being connected directly, or exchanging material through vesicle transport. Importantly, the endomembrane system does not include the membranes of plastids or mitochondria, but might have evolved partially from the actions of the latter.

<span class="mw-page-title-main">Lipoprotein</span> Biochemical assembly whose purpose is to transport hydrophobic lipid molecules

A lipoprotein is a biochemical assembly whose primary function is to transport hydrophobic lipid molecules in water, as in blood plasma or other extracellular fluids. They consist of a triglyceride and cholesterol center, surrounded by a phospholipid outer shell, with the hydrophilic portions oriented outward toward the surrounding water and lipophilic portions oriented inward toward the lipid center. A special kind of protein, called apolipoprotein, is embedded in the outer shell, both stabilising the complex and giving it a functional identity that determines its role.

<span class="mw-page-title-main">Cell theory</span> Biology of cells

In biology, cell theory is a scientific theory first formulated in the mid-nineteenth century, that living organisms are made up of cells, that they are the basic structural/organizational unit of all organisms, and that all cells come from pre-existing cells. Cells are the basic unit of structure in all living organisms and also the basic unit of reproduction.

<span class="mw-page-title-main">Lipid bilayer</span> Biological membrane structure

The lipid bilayer is a thin polar membrane made of two layers of lipid molecules. These membranes are flat sheets that form a continuous barrier around all cells. The cell membranes of almost all organisms and many viruses are made of a lipid bilayer, as are the nuclear membrane surrounding the cell nucleus, and membranes of the membrane-bound organelles in the cell. The lipid bilayer is the barrier that keeps ions, proteins and other molecules where they are needed and prevents them from diffusing into areas where they should not be. Lipid bilayers are ideally suited to this role, even though they are only a few nanometers in width, because they are impermeable to most water-soluble (hydrophilic) molecules. Bilayers are particularly impermeable to ions, which allows cells to regulate salt concentrations and pH by transporting ions across their membranes using proteins called ion pumps.

<span class="mw-page-title-main">Fluid mosaic model</span> Describe the fluid mosaic model of plasma membrane

The fluid mosaic model explains various characteristics regarding the structure of functional cell membranes. According to this biological model, there is a lipid bilayer in which protein molecules are embedded. The phospholipid bilayer gives fluidity and elasticity to the membrane. Small amounts of carbohydrates are also found in the cell membrane. The biological model, which was devised by Seymour Jonathan Singer and Garth L. Nicolson in 1972, describes the cell membrane as a two-dimensional liquid where embedded proteins are generally randomly distributed. For example, it is stated that "A prediction of the fluid mosaic model is that the two-dimensional long-range distribution of any integral protein in the plane of the membrane is essentially random."

<span class="mw-page-title-main">Lipid raft</span> Combination in the membranes of cells

The plasma membranes of cells contain combinations of glycosphingolipids, cholesterol and protein receptors organised in glycolipoprotein lipid microdomains termed lipid rafts. Their existence in cellular membranes remains controversial. Indeed, Kervin and Overduin imply that lipid rafts are misconstrued protein islands, which they propose form through a proteolipid code. Nonetheless, it has been proposed that they are specialized membrane microdomains which compartmentalize cellular processes by serving as organising centers for the assembly of signaling molecules, allowing a closer interaction of protein receptors and their effectors to promote kinetically favorable interactions necessary for the signal transduction. Lipid rafts influence membrane fluidity and membrane protein trafficking, thereby regulating neurotransmission and receptor trafficking. Lipid rafts are more ordered and tightly packed than the surrounding bilayer, but float freely within the membrane bilayer. Although more common in the cell membrane, lipid rafts have also been reported in other parts of the cell, such as the Golgi apparatus and lysosomes.

The Davson–Danielli model was a model of the plasma membrane of a cell, proposed in 1935 by Hugh Davson and James Danielli. The model describes a phospholipid bilayer that lies between two layers of globular proteins, which is both trilaminar and lipoprotinious. The phospholipid bilayer had already been proposed by Gorter and Grendel in 1925; however, the flanking proteinaceous layers in the Davson–Danielli model were novel and intended to explain Danielli's observations on the surface tension of lipid bi-layers.

A cell membrane defines a boundary between a cell and its environment. The primary constituent of a membrane is a phospholipid bilayer that forms in a water-based environment due to the hydrophilic nature of the lipid head and the hydrophobic nature of the two tails. In addition there are other lipids and proteins in the membrane, the latter typically in the form of isolated rafts.

Hugh Davson, Baron Davson was an English physiologist who worked on membrane transport and ocular fluids.

<span class="mw-page-title-main">History of cell membrane theory</span>

Cell theory has its origins in seventeenth century microscopy observations, but it was nearly two hundred years before a complete cell membrane theory was developed to explain what separates cells from the outside world. By the 19th century it was accepted that some form of semi-permeable barrier must exist around a cell. Studies of the action of anesthetic molecules led to the theory that this barrier might be made of some sort of fat (lipid), but the structure was still unknown. A series of pioneering experiments in 1925 indicated that this barrier membrane consisted of two molecular layers of lipids—a lipid bilayer. New tools over the next few decades confirmed this theory, but controversy remained regarding the role of proteins in the cell membrane. Eventually the fluid mosaic model was composed in which proteins “float” in a fluid lipid bilayer "sea". Although simplistic and incomplete, this model is still widely referenced today.

A model lipid bilayer is any bilayer assembled in vitro, as opposed to the bilayer of natural cell membranes or covering various sub-cellular structures like the nucleus. They are used to study the fundamental properties of biological membranes in a simplified and well-controlled environment, and increasingly in bottom-up synthetic biology for the construction of artificial cells. A model bilayer can be made with either synthetic or natural lipids. The simplest model systems contain only a single pure synthetic lipid. More physiologically relevant model bilayers can be made with mixtures of several synthetic or natural lipids.

Hydrophobic mismatch is the difference between the thicknesses of hydrophobic regions of a transmembrane protein and of the biological membrane it spans. In order to avoid unfavorable exposure of hydrophobic surfaces to water, the hydrophobic regions of transmembrane proteins are expected to have approximately the same thickness as the hydrophobic region of the surrounding lipid bilayer. Nevertheless, the same membrane protein can be encountered in bilayers of different thickness. In eukaryotic cells, the plasma membrane is thicker than the membranes of the endoplasmic reticulum. Yet all proteins that are abundant in the plasma membrane are initially integrated into the endoplasmic reticulum upon synthesis on ribosomes. Transmembrane peptides or proteins and surrounding lipids can adapt to the hydrophobic mismatch by different means.

James Frederic Danielli FRS (1911–1984) was an English biologist.

<span class="mw-page-title-main">Cell membrane</span> Biological membrane that separates the interior of a cell from its outside environment

The cell membrane is a biological membrane that separates and protects the interior of a cell from the outside environment. The cell membrane consists of a lipid bilayer, made up of two layers of phospholipids with cholesterols interspersed between them, maintaining appropriate membrane fluidity at various temperatures. The membrane also contains membrane proteins, including integral proteins that span the membrane and serve as membrane transporters, and peripheral proteins that loosely attach to the outer (peripheral) side of the cell membrane, acting as enzymes to facilitate interaction with the cell's environment. Glycolipids embedded in the outer lipid layer serve a similar purpose.

The fences and pickets model of plasma membrane is a concept of cell membrane structure suggesting that the fluid plasma membrane is compartmentalized by actin-based membrane-skeleton "fences" and anchored transmembrane protein "pickets". This model differs from older cell membrane structure concepts such as the Singer-Nicolson fluid mosaic model and the Saffman-Delbrück two-dimensional continuum fluid model that view the membrane as more or less homogeneous. The fences and pickets model was proposed to explain observations of molecular traffic made due to recent advances in single molecule tracking techniques.

Hop diffusion is a non-Brownian diffusion of proteins and lipid molecules within the plasma membrane. Hop diffusion occurs due to the discontinuity of the cell cytoplasmic membrane. According to the fences and pickets model, plasma membrane is compartmentalized by actin-based membrane-skeleton "fences", that occur when cytoplasmic domains collide with the actin-based membrane skeleton; and anchored-transmembrane protein "pickets". Due to these obstacles membrane proteins undergo temporary confinement within 30–700- nm compartments with infrequent intercompartmental hops.

Annular lipids are a set of lipids or lipidic molecules which preferentially bind or stick to the surface of membrane proteins in biological cells. They constitute a layer, or an annulus/ shell, of lipids which are partially immobilized due to the existence of lipid-protein interactions. Polar headgroups of these lipids bind to the hydrophilic part of the membrane protein(s) at the inner and outer surfaces of lipid bilayer membrane. The hydrophobic surface of the membrane proteins is bound to the apposed lipid fatty acid chains of the membrane bilayer. For integral membrane proteins spanning the thickness of the membrane bilayer, these annular/shell lipids may act like a lubricating layer on the proteins' surfaces, thereby facilitating almost free rotation and lateral diffusion of membrane proteins within the 2-dimensional expanse of the biological membrane(s). Outside the layer of shell/annular lipids, lipids are not tied down to protein molecules. However, they may be slightly restricted in their segmental motion freedom due to mild peer pressure of protein molecules, if present in high concentration, which arises from extended influence of protein-lipid interaction. Membrane areas away from protein molecules contain lamellar phase bulk lipids, which are largely free from any restraining effects due to protein-lipid interactions. Thermal denaturation of membrane proteins may destroy the secondary and tertiary structure of membrane proteins, exposing newer surfaces to membrane lipids and therefore increasing the number of lipids molecules in the annulus/shell layer. This phenomenon can be studied by the spin label electron paramagnetic resonance technique. The protein-lipid binding are dependent on OmpF pH levels and their structural features and location of the membranes. When said lipids bind to OmpF it is sensitive to changes that may occur in the electrospray polarity.

Garth L. Nicolson is an American biochemist who made a landmark scientific model for cell membrane, known as the fluid mosaic model. He is the founder of The Institute for Molecular Medicine at California, and he serves as the president, chief scientific officer and emeritus professor of molecular pathology. He is also a conjoint professor in the Faculty of Science and Technology, University of Newcastle, Australia.

Cubosomes are discrete, sub-micron, nanostructured particles of the bicontinuous cubic liquid crystalline phase. The term "bicontinuous" refers to two distinct hydrophilic regions separated by the bilayer. Bicontinuous cubic crystalline materials have been an active research topic because their structure lends itself well to controlled-release applications.

References

  1. "Membrane – An Introduction" (PDF). Wiley-VCH. Retrieved 9 October 2015.
  2. Becker's World of the Cell (8th ed.). University of Wisconsin-Madison: Jeff Hardin. 2012.
  3. Robertson, J. David. "Membrane Structure" (PDF). jcb.rupress.org. Retrieved 9 October 2015.
  4. Heuser, John E. "In Memory of J.David Robertson" (PDF). heuserlab.wustl.edu. Retrieved 8 October 2015.
  5. Hardin, Jeff; Kleinsmith, Lewis J.; Bertoni, Gregory; Becker, Wayne M. (2012). World of the Cell (Eighth ed.). US: Pearson Benjamin Cummings. pp. 158–163.
  6. R. Henderson & P. N. T. Unwin (September 4, 1975). "Three-dimensional model of purple membrane obtained by electron microscopy". Nature. 257 (5521). Cambridge: MRC Laboratory of Molecular Biology: 28–32. Bibcode:1975Natur.257...28H. doi:10.1038/257028a0. PMID   1161000.
  7. Malhotra, S. K. (1983). The Plasma membrane. Canada: John Wiley & Sons. pp. 3, 92, 93, 95.
  8. Kervin, Troy A.; Overduin, Michael (December 2024). "Membranes are functionalized by a proteolipid code". BMC Biology. 22 (1): 46. doi: 10.1186/s12915-024-01849-6 . ISSN   1741-7007. PMC   10898092 . PMID   38414038.
  9. Corradi, Valentina; Mendez-Villuendas, Eduardo; Ingólfsson, Helgi I.; Gu, Ruo-Xu; Siuda, Iwona; Melo, Manuel N.; Moussatova, Anastassiia; DeGagné, Lucien J.; Sejdiu, Besian I.; Singh, Gurpreet; Wassenaar, Tsjerk A.; Delgado Magnero, Karelia; Marrink, Siewert J.; Tieleman, D. Peter (2018-06-27). "Lipid–Protein Interactions Are Unique Fingerprints for Membrane Proteins". ACS Central Science. 4 (6): 709–717. doi:10.1021/acscentsci.8b00143. ISSN   2374-7943. PMC   6028153 . PMID   29974066.