Meniscus corrector

Last updated
Albert Bouwers 1941 catadioptric telescope with a concentric meniscus corrector Bouwers meniscus telescope concentric.svg
Albert Bouwers 1941 catadioptric telescope with a concentric meniscus corrector

A meniscus corrector is a negative meniscus lens that is used to correct spherical aberration in image-forming optical systems such as catadioptric telescopes. It works by having the equal but opposite spherical aberration of the objective it is designed to correct (usually a spherical mirror).

Contents

Types

Meniscus correctors are used as full aperture correctors, most commonly in a Maksutov telescope sub type called the Gregory or “spot” Maksutov–Cassegrain telescope. They are also used in the Bouwers meniscus telescope. There are Maksutov variations that use the same principle but place the meniscus lens as a sub-aperture corrector near the focus of the objective. There are other sub-aperture meniscus corrector catadioptric telescopes such as the Argunov–Cassegrain telescope and the Klevtsov–Cassegrain telescope.

Invention

The idea of using the spherical aberration of a meniscus lens to correct the opposite aberration in a spherical objective dates back as far as W. F. Hamilton’s 1814 Hamiltonian telescope, in Colonel A. Mangin's 1876 Mangin mirror, and also appears in Ludwig Schupmann’s Schupmann medial telescope near the end of the 19th century.

After the invention of the wide-field Schmidt camera in the early 1930s, at least four optical designers in early 1940s war-torn Europe came up with the idea of replacing the complicated Schmidt corrector plate with a simpler meniscus lens, including Albert Bouwers, Dmitri Dmitrievich Maksutov, K. Penning, and Dennis Gabor. [1] All of these designs used full aperture correctors (a meniscus corrector shell) to create a wide-field telescope with little or no coma or astigmatism. Albert Bouwers built a prototype meniscus telescope in August 1940 and patented it in February 1941. His design had the mirror and meniscus lens with surfaces that had a common centre of curvature, called a "concentric" or "monocentric" telescope. The design had an ultrawide field of view but did not correct chromatic aberration and was only suitable as a monochromatic astronomical camera. Dmitri Maksutov built a prototype for a similar type of meniscus telescope, the Maksutov telescope, in October 1941, and patented it in November of that same year. [2] His design corrected most spherical aberration and also corrected for chromatic aberration by placing a weakly negative-shaped meniscus corrector closer to the primary mirror. Dennis Gabor’s 1941 design was a non-monocentric meniscus corrector. [3] Wartime secrecy kept these designers from knowing about each other's design, making each invention independent.

See also

Related Research Articles

<span class="mw-page-title-main">Ritchey–Chrétien telescope</span> Specialized Cassegrain telescope

A Ritchey–Chrétien telescope is a specialized variant of the Cassegrain telescope that has a hyperbolic primary mirror and a hyperbolic secondary mirror designed to eliminate off-axis optical errors (coma). The RCT has a wider field of view free of optical errors compared to a more traditional reflecting telescope configuration. Since the mid 20th century, a majority of large professional research telescopes have been Ritchey–Chrétien configurations; some well-known examples are the Hubble Space Telescope, the Keck telescopes and the ESO Very Large Telescope.

<span class="mw-page-title-main">Optical telescope</span> Telescope for observations with visible light

An optical telescope is a telescope that gathers and focuses light mainly from the visible part of the electromagnetic spectrum, to create a magnified image for direct visual inspection, to make a photograph, or to collect data through electronic image sensors.

<span class="mw-page-title-main">Reflecting telescope</span> Telescopes which utilize curved mirrors to form an image

A reflecting telescope is a telescope that uses a single or a combination of curved mirrors that reflect light and form an image. The reflecting telescope was invented in the 17th century by Isaac Newton as an alternative to the refracting telescope which, at that time, was a design that suffered from severe chromatic aberration. Although reflecting telescopes produce other types of optical aberrations, it is a design that allows for very large diameter objectives. Almost all of the major telescopes used in astronomy research are reflectors. Many variant forms are in use and some employ extra optical elements to improve image quality or place the image in a mechanically advantageous position. Since reflecting telescopes use mirrors, the design is sometimes referred to as a catoptric telescope.

<span class="mw-page-title-main">Objective (optics)</span>

In optical engineering, the objective is the optical element that gathers light from the object being observed and focuses the light rays to produce a real image. Objectives can be a single lens or mirror, or combinations of several optical elements. They are used in microscopes, binoculars, telescopes, cameras, slide projectors, CD players and many other optical instruments. Objectives are also called object lenses, object glasses, or objective glasses.

<span class="mw-page-title-main">Newtonian telescope</span> Type of reflecting telescope

The Newtonian telescope, also called the Newtonian reflector or just a Newtonian, is a type of reflecting telescope invented by the English scientist Sir Isaac Newton, using a concave primary mirror and a flat diagonal secondary mirror. Newton's first reflecting telescope was completed in 1668 and is the earliest known functional reflecting telescope. The Newtonian telescope's simple design has made it very popular with amateur telescope makers.

<span class="mw-page-title-main">Coma (optics)</span> Aberration inherent to certain optical designs or due to imperfection in the lens

In optics, the coma, or comatic aberration, in an optical system refers to aberration inherent to certain optical designs or due to imperfection in the lens or other components that results in off-axis point sources such as stars appearing distorted, appearing to have a tail (coma) like a comet. Specifically, coma is defined as a variation in magnification over the entrance pupil. In refractive or diffractive optical systems, especially those imaging a wide spectral range, coma can be a function of wavelength, in which case it is a form of chromatic aberration.

<span class="mw-page-title-main">Schmidt camera</span> Astrophotographic telescope

A Schmidt camera, also referred to as the Schmidt telescope, is a catadioptric astrophotographic telescope designed to provide wide fields of view with limited aberrations. The design was invented by Bernhard Schmidt in 1930.

<span class="mw-page-title-main">Dmitry Dmitrievich Maksutov</span>

Dmitry Dmitrievich Maksutov was a Russian / Soviet optical engineer and amateur astronomer. He is best known as the inventor of the Maksutov telescope.

<span class="mw-page-title-main">Catadioptric system</span> Optical system where refraction and reflection are combined

A catadioptric optical system is one where refraction and reflection are combined in an optical system, usually via lenses (dioptrics) and curved mirrors (catoptrics). Catadioptric combinations are used in focusing systems such as searchlights, headlamps, early lighthouse focusing systems, optical telescopes, microscopes, and telephoto lenses. Other optical systems that use lenses and mirrors are also referred to as "catadioptric", such as surveillance catadioptric sensors.

<span class="mw-page-title-main">Maksutov telescope</span> Catadioptric telescope design

The Maksutov is a catadioptric telescope design that combines a spherical mirror with a weakly negative meniscus lens in a design that takes advantage of all the surfaces being nearly "spherically symmetrical". The negative lens is usually full diameter and placed at the entrance pupil of the telescope. The design corrects the problems of off-axis aberrations such as coma found in reflecting telescopes while also correcting chromatic aberration. It was patented in 1941 by Russian optician Dmitri Dmitrievich Maksutov. Maksutov based his design on the idea behind the Schmidt camera of using the spherical errors of a negative lens to correct the opposite errors in a spherical primary mirror. The design is most commonly seen in a Cassegrain variation, with an integrated secondary, that can use all-spherical elements, thereby simplifying fabrication. Maksutov telescopes have been sold on the amateur market since the 1950s.

<span class="mw-page-title-main">Schmidt–Cassegrain telescope</span> Type of catadioptric telescope

The Schmidt–Cassegrain is a catadioptric telescope that combines a Cassegrain reflector's optical path with a Schmidt corrector plate to make a compact astronomical instrument that uses simple spherical surfaces.

Vixen is a Japanese company that makes telescopes, binoculars, spotting scopes and accessories for their products.

<span class="mw-page-title-main">Cassegrain reflector</span> Combination of concave and convex mirrors

The Cassegrain reflector is a combination of a primary concave mirror and a secondary convex mirror, often used in optical telescopes and radio antennas, the main characteristic being that the optical path folds back onto itself, relative to the optical system's primary mirror entrance aperture. This design puts the focal point at a convenient location behind the primary mirror and the convex secondary adds a telephoto effect creating a much longer focal length in a mechanically short system.

<span class="mw-page-title-main">Argunov–Cassegrain telescope</span> Catadioptric telescope design

The Argunov–Cassegrain telescope is a catadioptric telescope design first introduced in 1972 by P. P. Argunov. All optics are spherical, and the classical Cassegrain secondary mirror is replaced by a sub-aperture secondary corrector group consisting of three air-spaced elements, two lenses and a Mangin mirror.

<span class="mw-page-title-main">Lurie–Houghton telescope</span>

The Houghton telescope or Lurie–Houghton telescope is a catadioptric telescope. Houghton's original design uses a two-lens corrector at the front of the telescope and a spherical mirror at the back; it was patented in 1944. Instead of the hard to make intricately shaped compound curve Schmidt corrector plate, or the heavy Maksutov-type meniscus corrector lens, the Houghton double-lens corrector is relatively easy to make.

<span class="mw-page-title-main">Mangin mirror</span> Catadioptric reflector for search lights

In optics, a Mangin mirror is a negative meniscus lens with the reflective surface on the rear side of the glass forming a curved mirror that reflects light without spherical aberration if certain conditions are met. This reflector was invented in 1876 by a French officer Alphonse Mangin as an improved catadioptric reflector for search lights and is also used in other optical devices.

A dialyte lens is a compound lens design that corrects optical aberrations where the lens elements are widely air-spaced. The design is used to save on the amount of glass used for specific elements or where elements can not be cemented because they have dissimilar curvatures. The word dialyte means "parted", "loose" or "separated".

Albert A. Bouwers (1893–1972) was a Dutch optical engineer. He is known for developing and working with X-rays and various optical technologies as a high-level researcher at Philips research labs. He is lesser known for patenting in 1941 a catadioptric meniscus telescope design similar to but slightly predating the Maksutov telescope.

<span class="mw-page-title-main">Klevtsov–Cassegrain telescope</span> Type of catadioptric telescope

The Klevtsov–Cassegrain telescope is a type of catadioptric Cassegrain telescope that uses a spherical primary mirror and a sub-aperture secondary corrector group composed of a small lens and a Mangin mirror.

References

  1. Lens design fundamentals, by Rudolf Kingslake, page 313
  2. "Dmitri Maksutov: The Man and His Telescopes By Eduard Trigubov and Yuri Petrunin". Archived from the original on 2017-05-29. Retrieved 2010-01-03.
  3. Handbook of Optical Systems, Survey of Optical Instruments, by Herbert Gross, Hannfried Zügge, Fritz Blechinger, Bertram Achtner, page 806

Further reading