Metallization pressure

Last updated

Metallization pressure is the pressure required for a non-metallic chemical element to become a metal. Every material is predicted to turn into a metal if the pressure is high enough, and temperature low enough. Some of these pressures are beyond the reach of diamond anvil cells, and are thus theoretical predictions. Neon has the highest metallization pressure for any element.

The value for phosphorus refers to pressurizing black phosphorus. The value for arsenic refers to pressurizing metastable black arsenic; grey arsenic, the standard state, is already a metallic conductor at standard conditions. No value is known or theoretically predicted for radon. Astatine is calculated to already be a metal at standard conditions, [1] although its extreme radioactivity means that this has never been tested experimentally.

ZElementp, Mbarref.type
1 Hydrogen 3.9 [2] theoretical
2 Helium 329 [3] theoretical
5 Boron 1.6 [4] [5] experimental
6 Carbon 11 [6] theoretical
7 Nitrogen >> 5 [7] theoretical
8 Oxygen 0.96 [8] [9] experimental
9 Fluorine 25 [10] theoretical
10 Neon 2084 [11] theoretical
14 Silicon 0.12 [12] experimental
15 Phosphorus 0.048 [13] experimental
16 Sulfur 0.83 [14] experimental
17 Chlorine 2.0 [15] experimental
18 Argon 5.1 [16] theoretical
32 Germanium 0.11 [17] experimental
33 Arsenic 0.022 [18] theoretical
34 Selenium 0.23 [19] experimental
35 Bromine 0.25 [20] experimental
36 Krypton 3.1 [16] [21] theoretical
52 Tellurium 0.04 [22] experimental
53 Iodine 0.16 [23] experimental
54 Xenon 1.3 [24] experimental
86 Radon ...

See also

References

  1. Hermann, A.; Hoffmann, R.; Ashcroft, N. W. (2013). "Condensed Astatine: Monatomic and Metallic". Physical Review Letters. 111 (11): 116404-1 –116404-5. Bibcode:2013PhRvL.111k6404H. doi:10.1103/PhysRevLett.111.116404. PMID   24074111.
  2. McMinis, Jeremy; Clay, Raymond C.; Lee, Donghwa; Morales, Miguel A. (2015). "Molecular to Atomic Phase Transition in Hydrogen under High Pressure". Physical Review Letters. 114 (10): 105305. Bibcode:2015PhRvL.114j5305M. doi: 10.1103/PhysRevLett.114.105305 . PMID   25815944.
  3. Monserrat, Bartomeu; Drummond, N. D.; Pickard, Chris J.; Needs, R. J. (2014). "Electron-Phonon Coupling and the Metallization of Solid Helium at Terapascal Pressures". Physical Review Letters. 112 (5): 055504. arXiv: 1311.1005 . Bibcode:2014PhRvL.112e5504M. doi:10.1103/PhysRevLett.112.055504. PMID   24580611. S2CID   29848984.
  4. Eremets, M. I.; Struzhkin, V. V.; Mao, H.; Hemley, R. J. (2001). "Superconductivity in boron". Science. 293 (5528): 272–274. doi:10.1126/science.1062286.
  5. Zhao, Jijun; Lu, Jian Ping (2002). "Pressure-induced metallization in solid boron". Physical Review B. 66 (9): 092101. arXiv: cond-mat/0109550 . Bibcode:2002PhRvB..66i2101Z. doi:10.1103/PhysRevB.66.092101. S2CID   119426107.
  6. Correa, Alfredo A.; Bonev, Stanimir A.; Galli, Giulia (2006). "Carbon under extreme conditions: phase boundaries and electronic properties from first-principles theory". Proceedings of the National Academy of Sciences of the United States of America. 103 (5): 1204–1208. Bibcode:2006PNAS..103.1204C. doi: 10.1073/pnas.0510489103 . ISSN   0027-8424. PMC   1345714 . PMID   16432191.
  7. Ma, Yanming; Oganov, Artem R.; Li, Zhenwei; Xie, Yu; Kotakoski, Jani (2009). "Novel High Pressure Structures of Polymeric Nitrogen". Physical Review Letters. 102 (6): 065501. Bibcode:2009PhRvL.102f5501M. doi:10.1103/PhysRevLett.102.065501. PMID   19257600.
  8. Akahama, Yuichi; Kawamura, Haruki; Häusermann, Daniel; Hanfland, Michael; Shimomura, Osamu (June 1995). "New High-Pressure Structural Transition of Oxygen at 96 GPa Associated with Metallization in a Molecular Solid". Physical Review Letters. 74 (23): 4690–4694. Bibcode:1995PhRvL..74.4690A. doi:10.1103/PhysRevLett.74.4690. PMID   10058574.
  9. Elatresh, Sabri F.; Bonev, Stanimir A. (2020). "Stability and metallization of solid oxygen at high pressure". Physical Chemistry Chemical Physics. 22 (22): 12577–12583. Bibcode:2020PCCP...2212577E. doi:10.1039/C9CP05267D. OSTI   1860780. PMID   32452471. S2CID   218891958.
  10. Olson, Mark A.; Bhatia, Shefali; Larson, Paul; Militzer, Burkhard (2020). "Prediction of chlorine and fluorine crystal structures at high pressure using symmetry driven structure search with geometric constraints". The Journal of Chemical Physics. 153 (9): 094111. arXiv: 2008.04471 . doi:10.1063/5.0018402. PMID   32891084. S2CID   221095681 . Retrieved 13 December 2022.
  11. Tang, Jun; Ao, Bingyun; Huang, Li; Ye, Xiaoqiu; Gu, Yunjun; Chen, Qifeng (2019). "Metallization and positive pressure dependency of bandgap in solid neon". The Journal of Chemical Physics. 150 (11): 111103. Bibcode:2019JChPh.150k1103T. doi: 10.1063/1.5089489 . PMID   30901987.
  12. Hu, Jing Zhu; Merkle, Larry D.; Menoni, Carmen S.; Spain, Ian L. (1986). "Crystal data for high-pressure phases of silicon". Physical Review B. 34 (7): 4679–4684. Bibcode:1986PhRvB..34.4679H. doi:10.1103/PhysRevB.34.4679. hdl: 10217/634 . PMID   9940261.
  13. Okajima, Michio; Endo, Shoichi; Akahama, Yuichi; Narita, Shin-ichiro (1984). "Electrical Investigation of Phase Transition in Black Phosphorus under High Pressure". Japanese Journal of Applied Physics. 23 (1): 15–19. Bibcode:1984JaJAP..23...15O. doi:10.1143/JJAP.23.15. S2CID   121615032.
  14. Akahama, Y.; Kobayashi, M.; Kawamura, H. (1993). "Pressure-induced structural phase transition in sulfur at 83 GPa". Physical Review B. 48 (10): 6862–6864. Bibcode:1993PhRvB..48.6862A. doi:10.1103/PhysRevB.48.6862. PMID   10006849.
  15. Dalladay-Simpson, Philip; Binns, Jack; Peña-Alvarez, Miriam; Donnelly, Mary-Ellen; Greenberg, Eran; Prakapenka, Vitali; Chen, Xiao-Jia; Gregoryanz, Eugene; Howie, Ross T. (8 March 2019). "Band gap closure, incommensurability and molecular dissociation of dense chlorine". Nature Communications. 10 (1): 1134. Bibcode:2019NatCo..10.1134D. doi: 10.1038/s41467-019-09108-x . ISSN   2041-1723. PMC   6408506 . PMID   30850606.
  16. 1 2 Kwon, I.; Collins, L.A.; Kress, J.D.; Troullier, N. (1995). "First-principles study of solid Ar and Kr under high compression". Physical Review B. 52 (21): 15165–15169. Bibcode:1995PhRvB..5215165K. doi:10.1103/PhysRevB.52.15165. PMID   9980870.
  17. Vohra, Yogesh K.; Brister, Keith E.; Desgreniers, Serge; Ruoff, Arthur L.; Chang, K. J.; Cohen, Marvin L. (1986). "Phase-Transition Studies of Germanium to 1.25 Mbar". Physical Review Letters. 56 (18): 1944–1947. Bibcode:1986PhRvL..56.1944V. doi:10.1103/PhysRevLett.56.1944. PMID   10032817.
  18. Li, Ruiping; Han, Nannan; Cheng, Yingchun; Huang, Wei (2019). "Pressure-induced metallization of black arsenic". Journal of Physics: Condensed Matter. 31 (50): 505501. Bibcode:2019JPCM...31X5501L. doi:10.1088/1361-648X/ab3f76. PMID   31469104. S2CID   201673605.
  19. Akahama, Y.; Kobayashi, M.; Kawamura, H. (1993). "Structural studies of pressure-induced phase transitions in selenium up to 150 GPa". Physical Review B. 47 (1): 20–26. Bibcode:1993PhRvB..47...20A. doi:10.1103/PhysRevB.47.20. PMID   10004412.
  20. San Miguel, A.; Libotte, H.; Gaspard, J.P.; Gauthier, M.; Itié, J.P.; Polian, A. (2000). "Bromine metallization studied by X-ray absorption spectroscopy". The European Physical Journal B. 17 (2): 227–233. Bibcode:2000EPJB...17..227S. doi:10.1007/s100510070136. S2CID   123571031.
  21. Hama, Juichiro; Suito, Kaichi (1989). "Equation of state and metallization in compressed solid krypton". Physics Letters A. 140 (3): 117–121. Bibcode:1989PhLA..140..117H. doi:10.1016/0375-9601(89)90503-3.
  22. Marini, C.; Chermisi, D.; Lavagnini, M.; Di Castro, D.; Petrillo, C.; Degiorgi, L.; Scandolo, S.; Postorino, P. (2012). "High-pressure phases of crystalline tellurium: A combined Raman and ab initio study". Physical Review B. 86 (6): 064103. Bibcode:2012PhRvB..86f4103M. doi:10.1103/PhysRevB.86.064103.
  23. Pasternak, M.; Farrell, J. N.; Taylor, R. D. (1987). "Metallization and structural transformation of iodine under pressure: A microscopic view". Physical Review Letters. 58 (6): 575–578. Bibcode:1987PhRvL..58..575P. doi:10.1103/physrevlett.58.575. PMID   10034976.
  24. Eremets, Mikhail; Gregoryanz, Eugene; Struzhkin, Victor; Mao, Ho-Kwang; Hemley, Russell; Mulders, Norbert; Zimmerman, Neil (2000). "Electrical Conductivity of Xenon at Megabar Pressures". Physical Review Letters. 85 (13): 2797–2800. Bibcode:2000PhRvL..85.2797E. doi:10.1103/PhysRevLett.85.2797. PMID   10991236.