Metallization pressure

Last updated

Metallization pressure is the pressure required for a non-metallic chemical element to become a metal. Every material is predicted to turn into a metal if the pressure is high enough, and temperature low enough. Some of these pressures are beyond the reach of diamond anvil cells, and are thus theoretical predictions. Neon has the highest metallization pressure for any element.

The value for phosphorus refers to pressurizing black phosphorus. The value for arsenic refers to pressurizing metastable black arsenic; grey arsenic, the standard state, is already a metallic conductor at standard conditions. No value is known or theoretically predicted for astatine and radon.

ZElementp, Mbarref.type
1 Hydrogen 3.9 [1] theoretical
2 Helium 329 [2] theoretical
5 Boron 1.6 [3] [4] experimental
6 Carbon 11 [5] theoretical
7 Nitrogen >> 5 [6] theoretical
8 Oxygen 0.96 [7] [8] experimental
9 Fluorine 25 [9] theoretical
10 Neon 2084 [10] theoretical
14 Silicon 0.12 [11] experimental
15 Phosphorus 0.048 [12] experimental
16 Sulfur 0.83 [13] experimental
17 Chlorine 2.0 [14] experimental
18 Argon 5.1 [15] theoretical
32 Germanium 0.11 [16] experimental
33 Arsenic 0.022 [17] theoretical
34 Selenium 0.23 [18] experimental
35 Bromine 0.25 [19] experimental
36 Krypton 3.1 [15] [20] theoretical
52 Tellurium 0.04 [21] experimental
53 Iodine 0.16 [22] experimental
54 Xenon 1.3 [23] experimental
85 Astatine ...
86 Radon ...

See also

Related Research Articles

Metallic hydrogen is a phase of hydrogen in which it behaves like an electrical conductor. This phase was predicted in 1935 on theoretical grounds by Eugene Wigner and Hillard Bell Huntington.

<span class="mw-page-title-main">Mott insulator</span> Materials classically predicted to be conductors, that are actually insulators

Mott insulators are a class of materials that are expected to conduct electricity according to conventional band theories, but turn out to be insulators. These insulators fail to be correctly described by band theories of solids due to their strong electron–electron interactions, which are not considered in conventional band theory. A Mott transition is a transition from a metal to an insulator, driven by the strong interactions between electrons. One of the simplest models that can capture Mott transition is the Hubbard model.

Solid oxygen forms at normal atmospheric pressure at a temperature below 54.36 K (−218.79 °C, −361.82 °F). Solid oxygen O2, like liquid oxygen, is a clear substance with a light sky-blue color caused by absorption in the red part of the visible light spectrum.

<span class="mw-page-title-main">Pseudogap</span> State at which a Fermi surface has a partial energy gap in condensed matter physics

In condensed matter physics, a pseudogap describes a state where the Fermi surface of a material possesses a partial energy gap, for example, a band structure state where the Fermi surface is gapped only at certain points.

A charge density wave (CDW) is an ordered quantum fluid of electrons in a linear chain compound or layered crystal. The electrons within a CDW form a standing wave pattern and sometimes collectively carry an electric current. The electrons in such a CDW, like those in a superconductor, can flow through a linear chain compound en masse, in a highly correlated fashion. Unlike a superconductor, however, the electric CDW current often flows in a jerky fashion, much like water dripping from a faucet, due to its electrostatic properties. In a CDW, the combined effects of pinning and electrostatic interactions likely play critical roles in the CDW current's jerky behavior, as discussed in sections 4 & 5 below.

In materials science, heavy fermion materials are a specific type of intermetallic compound, containing elements with 4f or 5f electrons in unfilled electron bands. Electrons are one type of fermion, and when they are found in such materials, they are sometimes referred to as heavy electrons. Heavy fermion materials have a low-temperature specific heat whose linear term is up to 1000 times larger than the value expected from the free electron model. The properties of the heavy fermion compounds often derive from the partly filled f-orbitals of rare-earth or actinide ions, which behave like localized magnetic moments.

Natalia Dubrovinskaia is a Swedish geologist of Russian origin.

<span class="mw-page-title-main">Octaoxygen</span> Allotrope of oxygen

Octaoxygen, also known as ε-oxygen or red oxygen, is an allotrope of oxygen consisting of eight oxygen atoms. This allotrope forms at room temperature at pressures between 10 and 96 GPa.

Solid hydrogen is the solid state of the element hydrogen, achieved by decreasing the temperature below hydrogen's melting point of 14.01 K. It was collected for the first time by James Dewar in 1899 and published with the title "Sur la solidification de l'hydrogène" in the Annales de Chimie et de Physique, 7th series, vol. 18, Oct. 1899. Solid hydrogen has a density of 0.086 g/cm3 making it one of the lowest-density solids.

<span class="mw-page-title-main">Collision cascade</span> Series of collisions between nearby atoms, initiated by a single energetic atom

In condensed-matter physics, a collision cascade is a set of nearby adjacent energetic collisions of atoms induced by an energetic particle in a solid or liquid.

<span class="mw-page-title-main">122 iron arsenide</span>

The 122 iron arsenide unconventional superconductors are part of a new class of iron-based superconductors. They form in the tetragonal I4/mmm, ThCr2Si2 type, crystal structure. The shorthand name "122" comes from their stoichiometry; the 122s have the chemical formula AEFe2Pn2, where AE stands for alkaline earth metal (Ca, Ba Sr or Eu) and Pn is pnictide (As, P, etc.). These materials become superconducting under pressure and also upon doping. The maximum superconducting transition temperature found to date is 38 K in the Ba0.6K0.4Fe2As2. The microscopic description of superconductivity in the 122s is yet unclear.

A composite fermion is the topological bound state of an electron and an even number of quantized vortices, sometimes visually pictured as the bound state of an electron and, attached, an even number of magnetic flux quanta. Composite fermions were originally envisioned in the context of the fractional quantum Hall effect, but subsequently took on a life of their own, exhibiting many other consequences and phenomena.

<span class="mw-page-title-main">Piers Coleman</span> British-American physicist

Piers Coleman is a British-born theoretical physicist, working in the field of theoretical condensed matter physics. Coleman is professor of physics at Rutgers University in New Jersey and at Royal Holloway, University of London.

<span class="mw-page-title-main">Allan H. MacDonald</span> Canadian-American physicist (born 1951)

Allan H. MacDonald is a theoretical condensed matter physicist and the Sid W. Richardson Foundation Regents Chair Professor of Physics at The University of Texas at Austin. His research interests are centered on the electronic properties of electrons in metals and semiconductors. He is well known for his work on correlated many-electron states in low-dimensional systems. In 2020, he became one of the laureates of the Wolf Prize in Physics, for predicting the magic angle that turns twisted bilayer graphene into a superconductor.

J. Gregory Dash (1923–2010) was a physics professor, known for his research on superfluidity, adsorption of gases on smooth surfaces, surface melting, and films on solid surfaces.

<span class="mw-page-title-main">Amnon Aharony</span> Physicist at Ben Gurion University in Israel

Amnon Aharony is an Israeli Professor (Emeritus) of Physics in the School of Physics and Astronomy at Tel Aviv University, Israel and in the Physics Department of Ben Gurion University of the Negev, Israel. After years of research on statistical physics, his current research focuses on condensed matter theory, especially in mesoscopic physics and spintronics. He is a member of the Israel Academy of Sciences and Humanities, a Foreign Honorary Member of the American Academy of Arts and Sciences and of several other academies. He also received several prizes, including the Rothschild Prize in Physical Sciences, and the Gunnar Randers Research Prize, awarded every other year by the King of Norway.

Dov I. Levine is an American-Israeli physicist, known for his research on quasicrystals, soft condensed matter physics, and statistical mechanics out of equilibrium.

Elbio Rubén Dagotto is an Argentinian-American theoretical physicist and academic. He is a distinguished professor in the department of physics and astronomy at the University of Tennessee, Knoxville, and Distinguished Scientist in the Materials Science and Technology Division at the Oak Ridge National Laboratory.

Leo Radzihovsky is a Russian American condensed matter physicist and academic serving as a professor of Distinction in Physics at the University of Colorado Boulder.

References

  1. McMinis, Jeremy; Clay, Raymond C.; Lee, Donghwa; Morales, Miguel A. (2015). "Molecular to Atomic Phase Transition in Hydrogen under High Pressure". Physical Review Letters. 114 (10): 105305. Bibcode:2015PhRvL.114j5305M. doi: 10.1103/PhysRevLett.114.105305 . PMID   25815944.
  2. Monserrat, Bartomeu; Drummond, N. D.; Pickard, Chris J.; Needs, R. J. (2014). "Electron-Phonon Coupling and the Metallization of Solid Helium at Terapascal Pressures". Physical Review Letters. 112 (5): 055504. arXiv: 1311.1005 . Bibcode:2014PhRvL.112e5504M. doi:10.1103/PhysRevLett.112.055504. PMID   24580611. S2CID   29848984.
  3. Eremets, M. I.; Struzhkin, V. V.; Mao, H.; Hemley, R. J. (2001). "Superconductivity in boron". Science. 293 (5528): 272–274. doi:10.1126/science.1062286.
  4. Zhao, Jijun; Lu, Jian Ping (2002). "Pressure-induced metallization in solid boron". Physical Review B. 66 (9): 092101. arXiv: cond-mat/0109550 . Bibcode:2002PhRvB..66i2101Z. doi:10.1103/PhysRevB.66.092101. S2CID   119426107.
  5. Correa, Alfredo A.; Bonev, Stanimir A.; Galli, Giulia (2006). "Carbon under extreme conditions: phase boundaries and electronic properties from first-principles theory". Proceedings of the National Academy of Sciences of the United States of America. 103 (5): 1204–1208. Bibcode:2006PNAS..103.1204C. doi: 10.1073/pnas.0510489103 . ISSN   0027-8424. PMC   1345714 . PMID   16432191.
  6. Ma, Yanming; Oganov, Artem R.; Li, Zhenwei; Xie, Yu; Kotakoski, Jani (2009). "Novel High Pressure Structures of Polymeric Nitrogen". Physical Review Letters. 102 (6): 065501. Bibcode:2009PhRvL.102f5501M. doi:10.1103/PhysRevLett.102.065501. PMID   19257600.
  7. Akahama, Yuichi; Kawamura, Haruki; Häusermann, Daniel; Hanfland, Michael; Shimomura, Osamu (June 1995). "New High-Pressure Structural Transition of Oxygen at 96 GPa Associated with Metallization in a Molecular Solid". Physical Review Letters. 74 (23): 4690–4694. Bibcode:1995PhRvL..74.4690A. doi:10.1103/PhysRevLett.74.4690. PMID   10058574.
  8. Elatresh, Sabri F.; Bonev, Stanimir A. (2020). "Stability and metallization of solid oxygen at high pressure". Physical Chemistry Chemical Physics. 22 (22): 12577–12583. Bibcode:2020PCCP...2212577E. doi:10.1039/C9CP05267D. OSTI   1860780. PMID   32452471. S2CID   218891958.
  9. Olson, Mark A.; Bhatia, Shefali; Larson, Paul; Militzer, Burkhard (2020). "Prediction of chlorine and fluorine crystal structures at high pressure using symmetry driven structure search with geometric constraints". The Journal of Chemical Physics. 153 (9): 094111. arXiv: 2008.04471 . doi:10.1063/5.0018402. PMID   32891084. S2CID   221095681 . Retrieved 13 December 2022.
  10. Tang, Jun; Ao, Bingyun; Huang, Li; Ye, Xiaoqiu; Gu, Yunjun; Chen, Qifeng (2019). "Metallization and positive pressure dependency of bandgap in solid neon". The Journal of Chemical Physics. 150 (11): 111103. Bibcode:2019JChPh.150k1103T. doi: 10.1063/1.5089489 . PMID   30901987.
  11. Hu, Jing Zhu; Merkle, Larry D.; Menoni, Carmen S.; Spain, Ian L. (1986). "Crystal data for high-pressure phases of silicon". Physical Review B. 34 (7): 4679–4684. Bibcode:1986PhRvB..34.4679H. doi:10.1103/PhysRevB.34.4679. hdl: 10217/634 . PMID   9940261.
  12. Okajima, Michio; Endo, Shoichi; Akahama, Yuichi; Narita, Shin-ichiro (1984). "Electrical Investigation of Phase Transition in Black Phosphorus under High Pressure". Japanese Journal of Applied Physics. 23 (1): 15–19. Bibcode:1984JaJAP..23...15O. doi:10.1143/JJAP.23.15. S2CID   121615032.
  13. Akahama, Y.; Kobayashi, M.; Kawamura, H. (1993). "Pressure-induced structural phase transition in sulfur at 83 GPa". Physical Review B. 48 (10): 6862–6864. Bibcode:1993PhRvB..48.6862A. doi:10.1103/PhysRevB.48.6862. PMID   10006849.
  14. Dalladay-Simpson, Philip; Binns, Jack; Peña-Alvarez, Miriam; Donnelly, Mary-Ellen; Greenberg, Eran; Prakapenka, Vitali; Chen, Xiao-Jia; Gregoryanz, Eugene; Howie, Ross T. (8 March 2019). "Band gap closure, incommensurability and molecular dissociation of dense chlorine". Nature Communications. 10 (1): 1134. Bibcode:2019NatCo..10.1134D. doi: 10.1038/s41467-019-09108-x . ISSN   2041-1723. PMC   6408506 . PMID   30850606.
  15. 1 2 Kwon, I.; Collins, L.A.; Kress, J.D.; Troullier, N. (1995). "First-principles study of solid Ar and Kr under high compression". Physical Review B. 52 (21): 15165–15169. Bibcode:1995PhRvB..5215165K. doi:10.1103/PhysRevB.52.15165. PMID   9980870.
  16. Vohra, Yogesh K.; Brister, Keith E.; Desgreniers, Serge; Ruoff, Arthur L.; Chang, K. J.; Cohen, Marvin L. (1986). "Phase-Transition Studies of Germanium to 1.25 Mbar". Physical Review Letters. 56 (18): 1944–1947. Bibcode:1986PhRvL..56.1944V. doi:10.1103/PhysRevLett.56.1944. PMID   10032817.
  17. Li, Ruiping; Han, Nannan; Cheng, Yingchun; Huang, Wei (2019). "Pressure-induced metallization of black arsenic". Journal of Physics: Condensed Matter. 31 (50): 505501. Bibcode:2019JPCM...31X5501L. doi:10.1088/1361-648X/ab3f76. PMID   31469104. S2CID   201673605.
  18. Akahama, Y.; Kobayashi, M.; Kawamura, H. (1993). "Structural studies of pressure-induced phase transitions in selenium up to 150 GPa". Physical Review B. 47 (1): 20–26. Bibcode:1993PhRvB..47...20A. doi:10.1103/PhysRevB.47.20. PMID   10004412.
  19. San Miguel, A.; Libotte, H.; Gaspard, J.P.; Gauthier, M.; Itié, J.P.; Polian, A. (2000). "Bromine metallization studied by X-ray absorption spectroscopy". The European Physical Journal B. 17 (2): 227–233. Bibcode:2000EPJB...17..227S. doi:10.1007/s100510070136. S2CID   123571031.
  20. Hama, Juichiro; Suito, Kaichi (1989). "Equation of state and metallization in compressed solid krypton". Physics Letters A. 140 (3): 117–121. Bibcode:1989PhLA..140..117H. doi:10.1016/0375-9601(89)90503-3.
  21. Marini, C.; Chermisi, D.; Lavagnini, M.; Di Castro, D.; Petrillo, C.; Degiorgi, L.; Scandolo, S.; Postorino, P. (2012). "High-pressure phases of crystalline tellurium: A combined Raman and ab initio study". Physical Review B. 86 (6): 064103. Bibcode:2012PhRvB..86f4103M. doi:10.1103/PhysRevB.86.064103.
  22. Pasternak, M.; Farrell, J. N.; Taylor, R. D. (1987). "Metallization and structural transformation of iodine under pressure: A microscopic view". Physical Review Letters. 58 (6): 575–578. Bibcode:1987PhRvL..58..575P. doi:10.1103/physrevlett.58.575. PMID   10034976.
  23. Eremets, Mikhail; Gregoryanz, Eugene; Struzhkin, Victor; Mao, Ho-Kwang; Hemley, Russell; Mulders, Norbert; Zimmerman, Neil (2000). "Electrical Conductivity of Xenon at Megabar Pressures". Physical Review Letters. 85 (13): 2797–2800. Bibcode:2000PhRvL..85.2797E. doi:10.1103/PhysRevLett.85.2797. PMID   10991236.