Metastable inner-shell molecular state

Last updated

MIMS formed with K-shell electrons (K-MIMS) MIMS Illustration - Final.jpg
MIMS formed with K-shell electrons (K-MIMS)
K-MIMS four-stage radiation cycle MIMS Radiation Cycle.jpg
K-MIMS four-stage radiation cycle

Metastable innershell molecular state (MIMS) [1] [2] [3] [4] is a class of ultra-high-energy short-lived molecules have the binding energy up to 1,000 times as large and the bond length down to 1/100th of what can be found in typical molecules. MIMS is formed by inner-shell electrons that are normally resistant to molecular formation. However, in stellar conditions, the inner-shell electrons become reactive to form molecular structures (MIMS) from combinations of all elements in the periodic table.

Contents

MIMS upon dissociation can emit X-ray photons with energies up to 100 keV at extremely high conversion efficiencies from compression energy to photon energy. MIMS is predicted to exist and dominate radiation processes in extreme astrophysical environments, such as large planet cores, star interiors, and black hole and neutron star surroundings. There, MIMS is predicted to enable highly energy-efficient transformation of the stellar compression energy into the radiation energy.

Black hole Astrophysical object from which nothing can escape

A black hole is a region of spacetime exhibiting gravitational acceleration so strong that nothing—no particles or even electromagnetic radiation such as light—can escape from it. The theory of general relativity predicts that a sufficiently compact mass can deform spacetime to form a black hole. The boundary of the region from which no escape is possible is called the event horizon. Although the event horizon has an enormous effect on the fate and circumstances of an object crossing it, no locally detectable features appear to be observed. In many ways, a black hole acts like an ideal black body, as it reflects no light. Moreover, quantum field theory in curved spacetime predicts that event horizons emit Hawking radiation, with the same spectrum as a black body of a temperature inversely proportional to its mass. This temperature is on the order of billionths of a kelvin for black holes of stellar mass, making it essentially impossible to observe.

Neutron star degenerate stellar remnant

A neutron star is the collapsed core of a giant star which before collapse had a total mass of between 10 and 29 solar masses. Neutron stars are the smallest and densest stars, not counting black holes, hypothetical white holes, quark stars and strange stars. Neutron stars have a radius on the order of 10 kilometres (6.2 mi) and a mass of about 1.4 solar masses. They result from the supernova explosion of a massive star, combined with gravitational collapse, that compresses the core past white dwarf star density to that of atomic nuclei.

The right schematic illustration shows the proposed four stages of the K-shell MIMS (K-MIMS) formation and X-ray generation process.

MIMS also can be readily produced in laboratory and industrial environments, such as hypervelocity particle impact, laser fusion, and Z machine. MIMS can be exploited for highly energy-efficient production of high intensity X-ray beams for a wide range of innovative applications, such as photolithography, X-ray lasers, and inertial fusion.

The Z Pulsed Power Facility, informally known as the Z machine, is the largest high frequency electromagnetic wave generator in the world and is designed to test materials in conditions of extreme temperature and pressure. Since its refurbishment in October 1996 it has been used primarily as an inertial confinement fusion (ICF) research facility. Operated by Sandia National Laboratories, it gathers data to aid in computer modeling of nuclear weapons and eventual nuclear fusion pulsed power plants. The Z machine is located at Sandia's main site in Albuquerque, New Mexico.

Photolithography, also called optical lithography or UV lithography, is a process used in microfabrication to pattern parts of a thin film or the bulk of a substrate. It uses light to transfer a geometric pattern from a photomask to a photosensitive chemical photoresist on the substrate. A series of chemical treatments then either etches the exposure pattern into the material or enables deposition of a new material in the desired pattern upon the material underneath the photoresist. In complex integrated circuits, a CMOS wafer may go through the photolithographic cycle as many as 50 times.

History

The inner-shell-bound metastable quasimolecules were proposed to exist in the X-ray generating scattering process since the work by Mott in the 1930s. [5] The existence of high energy quasimolecules in highly compressed matter (or strongly coupled plasma) was theoretically predicted in the ab initio quantum calculation by Younger et al. in the late 1980s. [6] In 2008, from the result obtained by Mueller, Rafelski and Greiner [7] for quasimolecules in atomic collisions at high impact velocity, Winterberg [8] predicted the existence of inner-shell-bound metastable keV molecules under high pressure and their use for the ignition of thermonuclear reactions. Metastable Innershell Molecular State (MIMS) that is homologous to the rare-gas excimers was proposed by Bae in 2008 [1] to interpret the mysterious anomalous X-ray signals observed by Bae and his colleagues at Brookhaven National Lab (BNL) in the 1990s. [9] [10] For more details, refer to the last section of this article, "Other models for inner-shell-bound molecules."

To search for many-body effects in the highly compressed stellar materials, Bae and his colleagues at BNL generated and studied such materials by impacting various bio and water nanoparticles at hypervelocities (v~100 km/s) on various targets. [9] [10] In their study, anomalous signals were discovered, when the nanoparticles were directly impacted on and detected by Si particle detectors that had windows sufficiently thick enough to block the penetration of the nanoparticles completely. By exploiting the discovered anomalous signals, the feasibility of generating highly compressed "stellar" matter at shock pressures on the order of 10 TPa (100 Mbar) with the nanoparticle impact in a non-destructive laboratory setup was proven. However, the nature of the signals and the underlying physics of their generation mechanism had not been understood for 15 years.

Nanoparticle

Nanoparticles are particles between 1 and 100 nanometres (nm) in size with a surrounding interfacial layer. The interfacial layer is an integral part of nanoscale matter, fundamentally affecting all of its properties. The interfacial layer typically consists of ions, inorganic and organic molecules. Organic molecules coating inorganic nanoparticles are known as stabilizers, capping and surface ligands, or passivating agents. In nanotechnology, a particle is defined as a small object that behaves as a whole unit with respect to its transport and properties. Particles are further classified according to diameter.

It was not until 2008 that Bae was able to unlock the mystery of the anomalous BNL signals owing to emerging sciences of the stellar materials. [8] [11] [12] In the analysis of the BNL signals, Bae discovered [1] that a new class of ultra-high-energy metastable molecules that are bound by inner-shell electrons was responsible for the signals and named the molecules Metastable Innershell Molecular State (MIMS). Further, Bae discovered that the observed energy conversion efficiency via MIMS from the nanoparticle kinetic energy to the radiation energy was as high as 40%, thus proposed that MIMS can enable a new generation of ultra-high efficiency compact X-ray generators.

In 2012, Bae independently confirmed [13] the BNL results with buckyball ions (C60 +) impacting on an Al target in an independent tabletop apparatus that is orders of magnitude more compact than that at BNL. The result also demonstrated the potential of scaling up of X-ray generation with nanoparticle impact by exploiting C60+ ions, of which currents can be readily scaled up to an industrial quantity in a tabletop apparatus. Bae also proposed a more elaborated MIMS model that is homologous to rare gas excimer molecules was developed and predicted that all elements in periodic table are subjected to the MIMS formation. [13] Up until then, the observed MIMS was proposed to be formed with L-shell electrons.

In MIMS research that involve a wide range of X-ray generation phenomena in 2013–2014, Bae discovered [2] [3] that the manifestations of MIMS that was formed with K-shell electrons have existed in extensive experimental data in the X-ray generating heavy ion collision process by numerous researchers for several decades. [14] [15] [16] In his papers, [2] [3] Bae proposed that the quasimolecule is a manifestation of MIMS during the collisional process, a special circumstance for producing MIMS. After extensive analyses and theoretical modeling of these data, which involve a wide range of elements in the periodic table, a successful integration of the data into the frame of the unified MIMS model was demonstrated. Thereby, the MIMS model was firmly established and confirmed for any combinations of all elements in the periodic table.

Specifically, the extensive analyses [2] [3] of the data that relate to hard X-ray generating collisions have resulted in a universal law (Z2–dependency) of the binding energy of the homonucleus MIMS bound by K-shell electrons (K-MIMS). Here Z is the atomic number of the constituent atoms of the K-MIMS. Bae further developed a unified theory to elucidate the Z2-dependent behavior of the homonucleus K-MIMS, which behaves much like the helium excimer molecule: He2*. [2] [3] The MIMS theory also predicted a 1/Z dependency law for the bond length of the homonucleus K-MIMS. Based on the MIMS theory, the uranium K-MIMS, for example, is predicted to have 1/100th the bond length, 2,000 times the binding energy, and 5,000 times the characteristic X-ray energy compared to the He excimer molecule. [17] The predicted bond lengths of the bismuth and uranium K-MIMS are in excellent agreement with that estimated from the experimental results by researchers at the GSI Helmholtz Centre for Heavy Ion Research in Darmstadt, Germany [18]

MIMS model

K-MIMS general potential diagram. K-MIMS general potential diagram.jpg
K-MIMS general potential diagram.

In typical environment, the ground state of rare gas atom dimers is electronically non-binding, but if their closed outershell electrons are excited, dimers can readily form transient bound molecules, excimers. For example, the ground He2 state (1sσg21sσu2: X1Σg+) is electronically repulsive, but excitation of an electron can lead to Rydberg states (for example, the metastable, 1sσg21sσu2sσg: a3Σu+) with the He2+core. [20] The low-lying metastable excited states of the dimer (the He2 excimer) are strongly covalently bound. The metastable excimer can radiate to the free repulsive ground state.

The excimer formation is a critical step in energy-efficient conversion of the atomic electron excitation/ionization energy into the radiation energy in rare gas plasma for the excimer lasers. Without forming the excimers, the energy of the excited atoms would be rapidly lost by non-radiative collisional decay processes in the high pressure environment. In other words, the excimer formation is a crucial step needed for efficient transformation of the atomic excitation energy to the radiation energy in an ultra-high pressure environment. Analogously, the MIMS formation is a crucial step required for efficiently transforming the atomic core-excitation energy into the radiation energy. [2] [3]

K-MIMS binding energy. K-MIMS binding energy - Z2 Fitting-New.jpg
K-MIMS binding energy.

Based on the MIMS model, [1] [2] [3] a schematic potential curve was proposed for the K-shell MIMS (K-MIMS) and illustrated in the right figure. In the "electronically-cold" highly compressed plasma, a K-shell core ion with a hole, [K1], collides with another core ion without a hole, [K0], to form a near-dissociative K-shell MIMS (K-MIMS) and its excess energy transforms into the vibration energy. Such a vibrationally hot K-MIMS in the plasma is denoted here by [[K1 + K0]]. Subsequently, a Rydberg-like pseudo-L-shell forms around the K-MIMS core ions that are proposed to go through a rapid relaxation into the lowest vibrational state by ionizing a number of electrons in the pseudo-L-shell. [2] [3] The vibrationally cold K-MIMS without an L-shell hole is denoted by [K1K0L0]. The vibrational energy is quenched by ionizing the bound [K1K0L0] MIMS into a higher ionic state [K1K0Ln] with n holes in the pseudo-L-shell, where 1  n  8. Because the n holes can be distributed among 2s and 2p orbits, thus the maximum value of n is 8. [21] The statistically distributed K-MIMS decays into the lower L-shell MIMS (L-MIMS), [K0K0L1], by emitting an X-ray photon, and subsequently the L-MIMS dissociates into two atomic ions. [2] [3]

Based on the previously proposed MIMS model, [1] [2] [3] a wide range of the K-MIMS binding energies were extracted from the extensive ranges of experimental data from He2* excimer to UAu* MIMS (for 2  Z  92). The right shows these data plotted against the constituent atom atomic number Z. The lowest bound state (a3Σu+) of He2* excimer has a binding energy of 1.96 eV, which is plotted in the right figure. These data are plotted against Z in the figure.

The overall data trend shows a Z2 dependency. Overall fitting is excellent, thus indicates that the K-MIMS can be modeled with a He2*-like excimer with core K-shell ions with an atomic number Z to the first order. Note that the binding energies are about one order of magnitude smaller than the corresponding K-shell satellite X-ray energies, which follow the (Z-1)2 dependency of the Moseley's law.

K-MIMS bond length. K-MIMS Bond Length-New.jpg
K-MIMS bond length.

An intuitive analytical theory has been developed and is presented here to illuminate the universal Z2-dependent behavior of K-MIMS by Bae. In this theory, the homologous molecular characteristics of K-MIMS is proposed to be primarily determined by the 1sσg2 bonding molecular orbit of the homologous core molecular ion under the assumption that other effects of surrounding electrons and atoms can be considered as a minor perturbation. The quantum characteristics of excimer can be described by a stable core molecular ion surrounded by Rydberg-like electron orbits. The lowest metastable electronic state of He2* (a3Σu+) is 1sσg21sσu2sσg, thus the proposed K-MIMS model should have a similar molecular orbital. In this case the bonding of K-MIMS is expected to be primarily dominated by the 1sσg2 orbital. Intuitively, the 1sσg2 orbital can be approximated in the frame of the LCAO model by a linear combination of the two 1s atomic orbitals, of which size is proportional to 1/Z. Therefore, the K-MIMS size, thus the bond length, is predicted to be proportional to 1/Z. Therefore, to the first order the K-MIMS bond length is predicted to be proportional to 1/Z. The right figure shows the predicted K-MIMS bond length as a function of the constituent atom atomic number, Z. The bond length of He2* (a3Σu+) is ~1.05 A, and the solid line represents a 1/Z curve that is extrapolated from the bond length of He2* (a3Σu+).

Currently, there is no other direct experimental data or theoretical results on the bond length of the K-MIMS. However, in the recent work by Mokler's group, [18] the sizes of quasimolecules were estimated from the X-ray cross-section enhancement of both projectile X-rays and target X-rays in H-like ion impact. The enhancement was interpreted to result from an extensive K-K electron sharing (transition of a hole) between the projectile and target ions due to the quasimolecule effect during the collision. Based on the K-MIMS theory as illustrated in the right figure, the K-K sharing distance can approximate the K-MIMS bond length. The two data points are the K-K sharing distances of U91+ ion impact on Au and Bi82+ ion impact on Au, which were estimated from the cross sections. The Z values were approximated by the (Zp +Zt)/2, where Zp is the atomic number of the projectile ion and Zt is that of the target atom. The predicted 1/Z curve is in excellent agreement with these data points as shown in the right figure.

MIMS can be also formed with two different elements. [4] Currently, such heteronucleus MIMS formed with H+ and He+ with other elements are proposed to be observed in H+ and He+ impact on a range of solids. Based on Equation of States (EOS) of materials, [11] [12] it can be predicted that pressures required to form homonucleus L-shell MIMS are on the order of 100 Mbar (10 TPa), while homonucleus K-shell MIMS on the order of 10 to 100 Gbar (1,000 to 10,000 TPa). Pressures required to form heteronucleus MIMS are predicted to be considerably smaller than that for homonucleus MIMS.

Other models for inner-shell bound molecules

Quasimolecules in heavy ion collisions

In the field of X-ray generation by heavy ion impact on solids, the search for the X-ray signatures of the inner-shell-bound quasimolecule in the X-ray generating scattering process can be traced down to the work by Mott in the 1930s. [5] The quasimolecule can be considered as a collisional complex that is a manifestation of MIMS during collision processes. However, the actual experimental searches for such X-ray signatures of the quasimolecule in X-ray generation in heavy ion impact started much later, in the 1970s. [16] One of the primary motivations of these researches was to explore a super-heavy quasimolecule/quasiatom with a combined atomic number exceeding 100, which was predicted to behave like a transuranium atom in the united atom frame.

In the early heavy ion collision researches, the cross-sections for carbon K X-ray production were measured for a wide range of ions incident on a carbon target, at energies from 20 to 80 keV. [22] The carbon Kα X-ray generation cross sections for the heavy ions, such as Ar+ and Xe+, were discovered to be several orders of magnitude larger than those by light ions, such as H+ and He+, which were consistent with the values predicted by the direct Coulomb scattering theory. [16] The anomalous cross sections for heavy ions were qualitatively interpreted in terms of the electron-promotion mechanism of the molecular orbital theory. [23] In his papers, Bae proposed that the production of the shocked regions that are able to bear abundant MIMS by the heavy ion impacts as in the nanoparticle impact [1] [9] [10] [13] can be another major factor for the observed X-ray yield enhancement.

More importantly, there had been extensive theoretical and experimental researches on intense K-shell satellites above the Kα line of various solids that were bombarded by heavy ions with kinetic energies on the order of 10 MeV. [14] In the researches, the K-shell satellites were interpreted to result from radiative decays of atoms with multiple holes, one of which is in the K-shell and others in the L-shell. Striking differences between the satellite spectra obtained with light ions, such as electrons and protons, and the spectra with heavy ions were discovered. In addition to the intensity difference, the X-ray spectra obtained with heavy ions showed many more peaks with multiple L-shell holes than those with light ions. The X-ray energies of the satellites were consistent with those obtained by the ab initio calculations based on the atomic model X-ray emissions that involve varying number of L-shell holes. However, the satellite data for larger number of L-shell holes significantly deviated from the calculation results. Based on the MIMS model, the X-ray satellite structures are now understood to result from the interaction between the vibrational state of K-MIMS and the L-shell electron ionization channels. [2] [19]

Younger's quasimolecules

Overall, Younger et al. [6] demonstrated the possibility of forming transient molecular states with closed-shell electrons in ab initio calculations for the first time for frozen or slow moving ion systems that can be approximated with the Born-Oppenheimer approximation.

Related Research Articles

Bohr model atomic model introduced by Niels Bohr in 1913

In atomic physics, the Rutherford–Bohr model or Bohr model or Bohr diagram, presented by Niels Bohr and Ernest Rutherford in 1913, is a system consisting of a small, dense nucleus surrounded by revolving electrons —similar to the structure of the Solar System, but with attraction provided by electrostatic forces rather than gravity. After the cubic model (1902), the plum-pudding model (1904), the Saturnian model (1904), and the Rutherford model (1911) came the Rutherford–Bohr model or just Bohr model for short (1913). The improvement to the Rutherford model is mostly a quantum physical interpretation of it. The model's key success lay in explaining the Rydberg formula for the spectral emission lines of atomic hydrogen. While the Rydberg formula had been known experimentally, it did not gain a theoretical underpinning until the Bohr model was introduced. Not only did the Bohr model explain the reason for the structure of the Rydberg formula, it also provided a justification for its empirical results in terms of fundamental physical constants.

Covalent bond chemical bond that involves the sharing of electron pairs between atoms

A covalent bond, also called a molecular bond, is a chemical bond that involves the sharing of electron pairs between atoms. These electron pairs are known as shared pairs or bonding pairs, and the stable balance of attractive and repulsive forces between atoms, when they share electrons, is known as covalent bonding. For many molecules, the sharing of electrons allows each atom to attain the equivalent of a full outer shell, corresponding to a stable electronic configuration. In organic chemistry covalent bonds are much more common than ionic bonds.

Molecule Electrically neutral entity consisting of more than one atom (n > 1); rigorously, a molecule, in which n > 1 must correspond to a depression on the potential energy surface that is deep enough to confine at least one vibrational state

A molecule is an electrically neutral group of two or more atoms held together by chemical bonds. Molecules are distinguished from ions by their lack of electrical charge. However, in quantum physics, organic chemistry, and biochemistry, the term molecule is often used less strictly, also being applied to polyatomic ions.

Atomic radius measure of the size of a chemical elements atoms

The atomic radius of a chemical element is a measure of the size of its atoms, usually the mean or typical distance from the center of the nucleus to the boundary of the surrounding shells of electrons. Since the boundary is not a well-defined physical entity, there are various non-equivalent definitions of atomic radius. Three widely used definitions of atomic radius are: Van der Waals radius, ionic radius, and covalent radius.

Energy level Different states of quantum systems

A quantum mechanical system or particle that is bound—that is, confined spatially—can only take on certain discrete values of energy, called energy levels. This contrasts with classical particles, which can have any amount of energy. The term is commonly used for the energy levels of electrons in atoms, ions, or molecules, which are bound by the electric field of the nucleus, but can also refer to energy levels of nuclei or vibrational or rotational energy levels in molecules. The energy spectrum of a system with such discrete energy levels is said to be quantized.

Ionization or ionisation, is the process by which an atom or a molecule acquires a negative or positive charge by gaining or losing electrons, often in conjunction with other chemical changes. The resulting electrically charged atom or molecule is called an ion. Ionization can result from the loss of an electron after collisions with subatomic particles, collisions with other atoms, molecules and ions, or through the interaction with electromagnetic radiation. Heterolytic bond cleavage and heterolytic substitution reactions can result in the formation of ion pairs. Ionization can occur through radioactive decay by the internal conversion process, in which an excited nucleus transfers its energy to one of the inner-shell electrons causing it to be ejected.

Ionization energy minimum amount of energy required to remove an electron from an atom or molecule in the gaseous state

In physics and chemistry, ionization energy (American English spelling) or ionisation energy (British English spelling), denoted Ei, is the minimum amount of energy required to remove the most loosely bound electron, the valence electron, of an isolated neutral gaseous atom or molecule. It is quantitatively expressed as

Noble gas compounds are chemical compounds that include an element from the noble gases, group 18 of the periodic table. Although the noble gases are generally unreactive elements, many such compounds have been observed, particularly involving the element xenon. From the standpoint of chemistry, the noble gases may be divided into two groups: the relatively reactive krypton, xenon (12.1 eV), and radon (10.7 eV) on one side, and the very unreactive argon (15.8 eV), neon (21.6 eV), and helium (24.6 eV) on the other. Consistent with this classification, Kr, Xe, and Rn form compounds that can be isolated in bulk at or near standard temperature and pressure, whereas He, Ne, Ar have been observed to form true chemical bonds using spectroscopic techniques, but only when frozen into a noble gas matrix at temperatures of 40 K or lower, in supersonic jets of noble gas, or under extremely high pressures with metals.

In chemistry, valence bond (VB) theory is one of two basic theories, along with molecular orbital (MO) theory, that were developed to use the methods of quantum mechanics to explain chemical bonding. It focuses on how the atomic orbitals of the dissociated atoms combine to give individual chemical bonds when a molecule is formed. In contrast, molecular orbital theory has orbitals that cover the whole molecule.

Penning ionization is a form of chemi-ionization, an ionization process involving reactions between neutral atoms or molecules. The Penning effect is put to practical use in applications such as gas-discharge neon lamps and fluorescent lamps, where the lamp is filled with a Penning mixture to improve the electrical characteristics of the lamps.

Helium hydride ion Chemical compound

The helium hydride ion or hydridohelium(1+) ion is a cation (positively charged ion) with chemical formula HeH+. It consists of a helium atom bonded to a hydrogen atom, with one electron removed. It can also be viewed as protonated helium. It is the lightest heteronuclear ion, and is believed to be one of the first compounds formed in the Universe after the Big Bang.

Positronium hydride chemical compound

Positronium hydride, or hydrogen positride is an exotic molecule consisting of a hydrogen atom bound to an exotic atom of positronium. Its formula is PsH. It was predicted to exist in 1951 by A Ore, and subsequently studied theoretically, but was not observed until 1990. R. Pareja, R. Gonzalez from Madrid trapped positronium in hydrogen laden magnesia crystals. The trap was prepared by Yok Chen from the Oak Ridge National Laboratory. In this experiment the positrons were thermalized so that they were not traveling at high speed, and they then reacted with H ions in the crystal. In 1992 it was created in an experiment done by David M. Schrader and F.M. Jacobsen and others at the Aarhus University in Denmark. The researchers made the positronium hydride molecules by firing intense bursts of positrons into methane, which has the highest density of hydrogen atoms. Upon slowing down, the positrons were captured by ordinary electrons to form positronium atoms which then reacted with hydrogen atoms from the methane.

The dihydrogen cation or hydrogen molecular ion is a cation with formula H+
2
. It consists of two hydrogen nuclei (protons) sharing a single electron. It is the simplest molecular ion.

Binary collision approximation

The binary collision approximation (BCA) signifies a method used in ion irradiation physics to enable efficient computer simulation of the penetration depth and defect production by energetic ions in solids. In the method, the ion is approximated to travel through a material by experiencing a sequence of independent binary collisions with sample atoms (nuclei). Between the collisions, the ion is assumed to travel in a straight path, experiencing electronic stopping power, but losing no energy in collisions with nuclei.

An excimer lamp is a source of ultraviolet light produced by spontaneous emission of excimer (exciplex) molecules.

The helium dimer is a van der Waals molecule with formula He2 consisting of two helium atoms. This chemical is the largest diatomic molecule—a molecule consisting of two atoms bonded together. The bond that holds this dimer together is so weak that it will break if the molecule rotates, or vibrates too much. It can only exist at very low cryogenic temperatures.

Helium is the most unreactive element, so it was commonly believed that helium compounds do not exist at all. Helium's first ionization energy of 24.57 eV is the highest of any element. Helium has a complete shell of electrons, and in this form the atom does not readily accept any extra electrons or join with anything to make covalent compounds. The electron affinity is 0.080 eV, which is very close to zero. The helium atom is small with the radius of the outer electron shell at 0.29 Å. The atom is very hard with a Pearson's hardness of 12.3 eV. It has the lowest polarizability of any kind of atom. However very weak van der Waals forces exist between helium and other atoms. This force may exceed repulsive forces. So at extremely low temperatures helium may form van der Waals molecules.

Neon compounds are chemical compounds containing the element neon (Ne) with other molecules or elements from the periodic table. Compounds of the noble gas neon were believed not to exist, but there are now known to be molecular ions containing neon, as well as temporary excited neon-containing molecules called excimers. Several neutral neon molecules have also been predicted to be stable, but are yet to be discovered in nature. Neon has been shown to crystallise with other substances and form clathrates or Van der Waals solids.

Argon compounds, the chemical compounds that contain the element argon, are rarely encountered due to the inertness of the argon atom. However, compounds of argon have been detected in inert gas matrix isolation, cold gases, and plasmas, and molecular ions containing argon have been made and also detected in space. One solid interstitial compound of argon, Ar1C60 is stable at room temperature. Ar1C60 was discovered by CSIRO.

The magnesium argide ion, MgAr+ is an ion composed of one ionised magnesium atom, Mg+ and an argon atom. It is important in inductively coupled plasma mass spectrometry and in the study of the field around the magnesium ion. The ionization potential of magnesium is lower than the first excitation state of argon, so the positive charge in MgAr+ will reside on the magnesium atom. Neutral MgAr molecules can also exist in an excited state.

References

  1. 1 2 3 4 5 6 Y.K. Bae (2008). "Metastable inner-shell molecular state (MIMS)". Physics Letters A . 372 (29): 4865–4869. arXiv: 0805.0340 . Bibcode:2008PhLA..372.4865B. doi:10.1016/j.physleta.2008.05.037.
  2. 1 2 3 4 5 6 7 8 9 10 11 Y.K. Bae (2014). "Metastable Innershell Molecular State (MIMS) II: K-shell X-ray satellites in heavy ion impact on solids". Results in Physics. 4: 170–176. Bibcode:2014ResPh...4..170B. doi:10.1016/j.rinp.2014.09.005.
  3. 1 2 3 4 5 6 7 8 9 10 Bae, Young K. (2016-03-11). "Metastable innershell molecular state (MIMS) III: The universal binding energy and bond length of the homonucleus K-shell MIMS". Physics Letters A. 380 (11–12): 1178–1183. Bibcode:2016PhLA..380.1178B. doi:10.1016/j.physleta.2014.09.024.
  4. 1 2 Y.K. Bae (2014). "Metastable innershell molecular state (MIMS) IV: Heteronucleus K-shell MIMS with H+ and He+". Results in Physics. 4: 198–203. Bibcode:2014ResPh...4..198B. doi:10.1016/j.rinp.2014.10.002.
  5. 1 2 Mott, N.F. (1931). "On the Theory of Excitation by Collision with Heavy Particles". Proceedings of the Cambridge Philosophical Society . 27 (4): 553–560. Bibcode:1931PCPS...27..553M. doi:10.1017/s0305004100009816.
  6. 1 2 Younger, S.M.; et al. (1988). "Quantum calculations of the electronic structures of a many-atom plasma". Physical Review Letters . 61 (8): 962–965. Bibcode:1988PhRvL..61..962Y. doi:10.1103/physrevlett.61.962. PMID   10039479.
  7. B. Mueller; J. Rafelski & W. Greiner (1973). "Solution of the Dirac equation with two Coulomb centres". Physics Letters. 47B (1): 5. Bibcode:1973PhLB...47....5M. doi:10.1016/0370-2693(73)90554-6.
  8. 1 2 F. Winterberg (2008). "Transient Formation of Super-Explosives under High Pressure for Fast Ignition". Zeitschrift für Naturforschung . 63a (1–2): 35. Bibcode:2008ZNatA..63...35W. doi:10.1515/zna-2008-1-206.
  9. 1 2 3 Y.K. Bae; Y.Y. Chu & L. Friedman (1995). "Observation of enhancement of stopping power and possible hydrodynamic shock behavior in penetration of large molecules in solids". Physical Review A . A51 (3): R1742. Bibcode:1995PhRvA..51.1742B. doi:10.1103/PhysRevA.51.R1742.
  10. 1 2 3 Y.K. Bae; et al. (1996). "Detection of accelerated large water cluster ions and electrosprayed biomolecules with passivated solid state detectors". Nuclear Instruments and Methods in Physics Research Section B . 114 (1): 185–190. Bibcode:1996NIMPB.114..185B. doi:10.1016/0168-583x(96)00043-2.
  11. 1 2 B.F. Rozsnyai; et al. (2001). "Theory and experiment for ultrahigh pressure shock Hugoniots". Physics Letters A . 291 (4): 226–231. Bibcode:2001PhLA..291..226R. doi:10.1016/s0375-9601(01)00661-2.
  12. 1 2 J.C. Pain (2007). "Equation-of-state model for shock compression of hot dense matter". Physics Letters A . 362 (2–3): 120–124. arXiv: 0707.0010 . Bibcode:2007PhLA..362..120P. doi:10.1016/j.physleta.2006.10.013.
  13. 1 2 3 Y.K. Bae (2013). "Creating nanostars with buckball". Physics Letters A . 377 (45–48): 3304–3311. Bibcode:2013PhLA..377.3304B. doi:10.1016/j.physleta.2013.10.036.
  14. 1 2 Williams 1976 , pp. 166–191
  15. Crasemann 1975
  16. 1 2 3 R. Anholt (1985). "X-rays from quasimolecules". Reviews of Modern Physics . 57 (4): 995–1053. Bibcode:1985RvMP...57..995A. doi:10.1103/revmodphys.57.995.
  17. Huber 1979
  18. 1 2 P. Verma; et al. (2006). "Probing superheavy quasimolecular collisions with incoming inner shell vacancies". Nuclear Instruments and Methods in Physics Research Section B . 245 (1): 56–60. Bibcode:2006NIMPB.245...56V. doi:10.1016/j.nimb.2005.11.161.
  19. 1 2 3 4 Y.K. Bae (2014). "Metastable innershell molecular state (MIMS) III: The universal binding energy and bond length of the homonucleus K-shell MIMS". Physics Letters A . in press (11–12): 1178–1183. Bibcode:2016PhLA..380.1178B. doi:10.1016/j.physleta.2014.09.024.
  20. Birks, J.B. (1975). "Excimers". Reports on Progress in Physics (38): 903.
  21. Pratt, S.T. (2005). "Vibrational autoionization in polyatomic molecules". Annual Review of Physical Chemistry . 56: 281–308. Bibcode:2005ARPC...56..281P. doi:10.1146/annurev.physchem.56.092503.141204. PMID   15796702.
  22. Der, R.C.; et al. (1968). "Production of carbon characteristic X-rays by heavy-ion bombardment". Physical Review Letters . 21 (26): 1731–1732. Bibcode:1968PhRvL..21.1731D. doi:10.1103/physrevlett.21.1731.
  23. Fano, U.; Lichten, W. (1965). "Interpretation of Ar+ - Ar collisions". Physical Review Letters . 14 (16): 627–629. Bibcode:1965PhRvL..14..627F. doi:10.1103/physrevlett.14.627.

Further reading

University textbooks and monographs