Microbial electrolysis carbon capture (MECC) is a carbon capture technique using microbial electrolysis cells during wastewater treatment. MECC results in net negative carbon emission wastewater treatment by removal of carbon dioxide (CO2) during the treatment process in the form of calcite (CaCO3), and production of profitable H2 gas.
Anthropogenic carbon dioxide emissions contribute to significant regional climate change due to the compound's contribution to the greenhouse gas effect in the atmosphere. Most mitigation goals to remove CO2 from the atmosphere are based on high levels of CO2 produced by fossil fuel combustion as a basis for energy production. The use of fossil fuels emits CO2 and other toxic compounds such as SOx and NOx in the process of combustion. Economic growth is reliant on energy production for transportation and industrial production of goods and services, the amount of CO2 emitted is predicted to continue to increase in the foreseeable future.
Wastewater processing reflects a small percentage of greenhouse gas emissions. Currently, wastewater treatment consumes "3% of total electricity within the U.S." [1] At least 12 trillion gallons of wastewater are treated in the United States alone per year, which contributes to 1.5% of global greenhouse gas emissions. [1] Microbial electrolysis carbon capture (MECC) is a process that contributes to sustainable energy practice in both private and public sectors. MECC takes advantage of properties inherent to wastewater, such as organic content, to remove carbon dioxide and produce calcite precipitate and hydrogen gas.
Wastewater treatment plants are held accountable by The 2004 Greenhouse Gas Protocol Initiative for their emissions of greenhouse gases by the use of electricity to treat wastewater. [2] For example, energy is required for the aeration process that releases volatile compounds from the water, and also for the mixing and transportation of polluted and recycled fluid moving throughout the process. [2] The electricity generation process itself necessary for wastewater treatment produces CO2, CH4, and nitrous oxide. [2] The aerobic treatment step of the water releases N2O and CO2, similar to the particle settling step, and the activated sludge step releases both CO2 and methane. [2]
Microbes in wastewater have the potential to enhance mineralization of CO2. [1] Mineralization of CO2 into CaCO3 immobilizes CO2 which prevent leakages by stabilizing underground pressure and reducing permeability of the cap rock. [3] By Le Chatelier's principle, increasing Ca2+ availability and increasing pH will increase the rate of mineralization. [3] Negatively charged surfaces on microbes have a high affinity for cations such as Ca2+ and, though metabolic function, increase saturation of CO2 in solution. [1] In addition, bacterial ureolysis (hydrolysis of urea) increases pH of the solution. [3]
The microbial electrolytic process uses wastewater as a source of charged ions and outputs hydrogen gas through the use of the microbial electrolysis cell. [1] The wastewater itself provides electrolytes and is used to dissolve minerals. [1] It is in the wastewater where reactions occur that bind CO2 molecules to make new substances. [1]
On the anode, microorganisms called exoelectrogens interact with organic compounds to split hydrogen and produce CO2. [1] The resulting electrons travel through the circuit to the cathode, where they reduce water, to produce H2 gas and OH− ions. [1] The increased cathode pH dissolves silicate minerals, releasing metal ions such as Ca2+. Protons (H+) produced at the anode act with these metal ions to capture and ultimately mineralize CO2 into carbonate. [1] Due to the high production of H2gas, and the ability for the system to recycle up to 95% of the gas, the result is a gain of 57-63kJ/mol CO2 , or a gain of 63kJ per mol of CO2 captured. [1]
The CO2 sequestered and H2 produced with this method, as well as being "net energy positive" are specifically mentioned as the highlights of the process, as well as the opportunity to use recycled materials such as HCO3− produced by the MECC which is useful for water treatment plants. [1] The water leftover can be given to the external CO2 emissions plants (such as coal power). [1] An advantage of the MECC process over other alternative approaches like anaerobic digestion is that MECC works well at low temperatures, small-scale, and low COD concentrations. [4] The economics section describes current economic disadvantages of this process.
Microbial electrolytic carbon capture has yet to be implemented in present wastewater plants, therefore economic cost and benefits are current projections based on research of the technology rather than operational data. Lu et al. 2015 summarize the potential economic benefits of MECC use in their 2015 article in which they define the method of MECC. [1] Their results estimate a “$48 per ton CO2 mitigated” [1] net cost for MECC technology applied to wastewater plants. This estimation factors in the parasitic energy costs, operational costs and initial capital required to perform MECC, as well as potential cost offsets such as revenue due to water treatment, H2 production, and reduction in fossil fuel consumption for commercial manufacturing of H2 and treatment of wastewater. [1]
The projected net cost of $48 per ton of mitigated CO2 is lower than estimated costs for pulverized coal power plant post-combustion carbon capture absorption using MEA and geologic sequestration ($65/t-CO2), [5] which is currently the most prolific Carbon Capture and Sequestration (CCS) technique. The MECC cost projection is also lower than the cost of many other CCS technologies: the direct air CO2 capture methods (about $1000/t-CO2), [6] the Bio-Energy Carbon Capture and Storage (BECCS) technique ($60–250/t-CO2), [7] the abiotic electrolytic dissolution of silicate method ($86/t-CO2), [1] [8] and the pulverized coal power plant carbon capture by absorption and membrane techniques ($70–270/t-CO2). [9] The economics of MECC approach to carbon capture will benefit from future investigation in optimizing design and materials used. [1] Further research is needed to predict the scope of costs and setbacks related to engineering and running a functional MECC system within current wastewater plants. [1]
Critics of MECC discuss inefficiencies of the process, installation, materials, and potential setbacks that may result in economic losses. [10] Although MECC is projected to be cheaper than other existing carbon capture techniques, it is considerably more expensive (on the order of 800 times more expensive) than present wastewater treatment technology and therefore faces a substantial barrier to implementation in public and private wastewater treatment plants. [10] Furthermore, the efficiency of Microbial Fuel Cell technology, which is analogous to the microbial system used within MECC, has been criticized for its unpredictability due to relying upon the chemical and nutrient content of varying wastewater, as well as the health of living microbes. [11] [10] Inefficient MFCs lead to greater operation costs as cost offset fluctuates with departure from maximum efficiency of the system. [10]
In chemistry and manufacturing, electrolysis is a technique that uses direct electric current (DC) to drive an otherwise non-spontaneous chemical reaction. Electrolysis is commercially important as a stage in the separation of elements from naturally occurring sources such as ores using an electrolytic cell. The voltage that is needed for electrolysis to occur is called the decomposition potential. The word "lysis" means to separate or break, so in terms, electrolysis would mean "breakdown via electricity".
The Hall–Héroult process is the major industrial process for smelting aluminium. It involves dissolving aluminium oxide (alumina) in molten cryolite, and electrolyzing the molten salt bath, typically in a purpose-built cell. The Hall–Héroult process applied at industrial scale happens at 940–980 °C and produces 99.5–99.8% pure aluminium. Recycled aluminum requires no electrolysis, thus it does not end up in this process.
Steelmaking is the process of producing steel from iron ore and/or scrap. In steelmaking, impurities such as nitrogen, silicon, phosphorus, sulfur and excess carbon are removed from the sourced iron, and alloying elements such as manganese, nickel, chromium, carbon and vanadium are added to produce different grades of steel.
The hydrogen economy is an umbrella term that draws together the roles hydrogen can play alongside renewable electricity to decarbonize those sectors and activities which may be technically difficult to decarbonize through other means, or where cheaper and more energy-efficient clean solutions are not available. In this context, hydrogen economy encompasses hydrogen's production through to end-uses in ways that substantively contribute to avoiding the use of fossil fuels and mitigating greenhouse gas emissions.
A fossil fuel power station is a thermal power station which burns a fossil fuel, such as coal or natural gas, to produce electricity. Fossil fuel power stations have machinery to convert the heat energy of combustion into mechanical energy, which then operates an electrical generator. The prime mover may be a steam turbine, a gas turbine or, in small plants, a reciprocating gas engine. All plants use the energy extracted from the expansion of a hot gas, either steam or combustion gases. Although different energy conversion methods exist, all thermal power station conversion methods have their efficiency limited by the Carnot efficiency and therefore produce waste heat.
Climate change mitigation is action to limit climate change. This action either reduces emissions of greenhouse gases or removes those gases from the atmosphere. The recent rise in global temperature is mostly due to emissions from burning fossil fuels such as coal, oil, and natural gas. There are various ways that mitigation can reduce emissions. These are transitioning to sustainable energy sources, conserving energy, and increasing efficiency. It is possible to remove carbon dioxide from the atmosphere. This can be done by enlarging forests, restoring wetlands and using other natural and technical processes. The name for these processes is carbon sequestration. Governments and companies have pledged to reduce emissions to prevent dangerous climate change. These pledges are in line with international negotiations to limit warming.
Coal pollution mitigation, sometimes labeled as clean coal, is a series of systems and technologies that seek to mitigate health and environmental impact of burning coal for energy. Burning coal releases harmful substances, including mercury, lead, sulfur dioxide (SO2), nitrogen oxides (NOx), and carbon dioxide (CO2), contributing to air pollution, acid rain, and greenhouse gas emissions. Methods include flue-gas desulfurization, selective catalytic reduction, electrostatic precipitators, and fly ash reduction focusing on reducing the emissions of these harmful substances. These measures aim to reduce coal's impact on human health and the environment.
Carbon capture and storage (CCS) is a process in which a relatively pure stream of carbon dioxide (CO2) from industrial sources is separated, treated and transported to a long-term storage location. For example, the carbon dioxide stream that is to be captured can result from burning fossil fuels or biomass. Usually the CO2 is captured from large point sources, such as a chemical plant or biomass plant, and then stored in an underground geological formation. The aim is to reduce greenhouse gas emissions and thus mitigate climate change. The IPCC's most recent report on mitigating climate change describes CCS retrofits for existing power plants as one of the ways to limit emissions from the electricity sector and meet Paris Agreement goals.
Carbon sequestration is the process of storing carbon in a carbon pool. Carbon sequestration is a naturally occurring process but it can also be enhanced or achieved with technology, for example within carbon capture and storage projects. There are two main types of carbon sequestration: geologic and biologic.
Hydrogen production is the family of industrial methods for generating hydrogen gas. There are four main sources for the commercial production of hydrogen: natural gas, oil, coal, and electrolysis of water; which account for 48%, 30%, 18% and 4% of the world's hydrogen production respectively. Fossil fuels are the dominant source of industrial hydrogen. As of 2020, the majority of hydrogen (~95%) is produced by steam reforming of natural gas and other light hydrocarbons, partial oxidation of heavier hydrocarbons, and coal gasification. Other methods of hydrogen production include biomass gasification and methane pyrolysis. Methane pyrolysis and water electrolysis can use any source of electricity including renewable energy.
Carbon dioxide removal (CDR), also known as carbon removal, greenhouse gas removal (GGR) or negative emissions, is a process in which carbon dioxide gas is removed from the atmosphere by deliberate human activities and durably stored in geological, terrestrial, or ocean reservoirs, or in products. In the context of net zero greenhouse gas emissions targets, CDR is increasingly integrated into climate policy, as an element of climate change mitigation strategies. Achieving net zero emissions will require both deep cuts in emissions and the use of CDR, but CDR is not a current climate solution. In the future, CDR may be able to counterbalance emissions that are technically difficult to eliminate, such as some agricultural and industrial emissions.
Bioenergy with carbon capture and storage (BECCS) is the process of extracting bioenergy from biomass and capturing and storing the carbon, thereby removing it from the atmosphere. BECCS can be a "negative emissions technology" (NET). The carbon in the biomass comes from the greenhouse gas carbon dioxide (CO2) which is extracted from the atmosphere by the biomass when it grows. Energy ("bioenergy") is extracted in useful forms (electricity, heat, biofuels, etc.) as the biomass is utilized through combustion, fermentation, pyrolysis or other conversion methods.
Greenhouse gas emissions are one of the environmental impacts of electricity generation. Measurement of life-cycle greenhouse gas emissions involves calculating the global warming potential of energy sources through life-cycle assessment. These are usually sources of only electrical energy but sometimes sources of heat are evaluated. The findings are presented in units of global warming potential per unit of electrical energy generated by that source. The scale uses the global warming potential unit, the carbon dioxide equivalent, and the unit of electrical energy, the kilowatt hour (kWh). The goal of such assessments is to cover the full life of the source, from material and fuel mining through construction to operation and waste management.
Carbon-neutral fuel is fuel which produces no net-greenhouse gas emissions or carbon footprint. In practice, this usually means fuels that are made using carbon dioxide (CO2) as a feedstock. Proposed carbon-neutral fuels can broadly be grouped into synthetic fuels, which are made by chemically hydrogenating carbon dioxide, and biofuels, which are produced using natural CO2-consuming processes like photosynthesis.
Sustainable energy management in the wastewater sector applies the concept of sustainable management to the energy involved in the treatment of wastewater. The energy used by the wastewater sector is usually the largest portion of energy consumed by the urban water and wastewater utilities. The rising costs of electricity, the contribution to greenhouse gas emissions of the energy sector and the growing need to mitigate global warming, are driving wastewater utilities to rethink their energy management, adopting more energy efficient technologies and processes and investing in on-site renewable energy generation.
Carbon capture and utilization (CCU) is the process of capturing carbon dioxide (CO2) from industrial processes and transporting it via pipelines to where one intends to use it in industrial processes.
Direct air capture (DAC) is the use of chemical or physical processes to extract carbon dioxide directly from the ambient air. If the extracted CO2 is then sequestered in safe long-term storage, the overall process will achieve carbon dioxide removal and be a "negative emissions technology" (NET).
Sorption enhanced water gas shift (SEWGS) is a technology that combines a pre-combustion carbon capture process with the water gas shift reaction (WGS) in order to produce a hydrogen rich stream from the syngas fed to the SEWGS reactor.
Hydrogen evolution reaction (HER) is a chemical reaction that yields H2. The conversion of protons to H2 requires reducing equivalents and usually a catalyst. In nature, HER is catalyzed by hydrogenase enzymes. Commercial electrolyzers typically employ platinum supported as the catalyst at the anode of the electrolyzer. HER is useful for producing hydrogen gas, providing a clean-burning fuel. HER, however, can also be an unwelcome side reaction that competes with other reductions such as nitrogen fixation, or electrochemical reduction of carbon dioxide or chrome plating.
Microbial electrochemical technologies (METs) use microorganisms as electrochemical catalyst, merging the microbial metabolism with electrochemical processes for the production of bioelectricity, biofuels, H2 and other valuable chemicals. Microbial fuel cells (MFC) and microbial electrolysis cells (MEC) are prominent examples of METs. While MFC is used to generate electricity from organic matter typically associated with wastewater treatment, MEC use electricity to drive chemical reactions such as the production of H2 or methane. Recently, microbial electrosynthesis cells (MES) have also emerged as a promising MET, where valuable chemicals can be produced in the cathode compartment. Other MET applications include microbial remediation cell, microbial desalination cell, microbial solar cell, microbial chemical cell, etc.,.