Microbial hyaluronic acid production

Last updated

Microbial hyaluronic acid production refers to the process by which microorganisms, such as bacteria and yeast, are utilized in fermentation to synthesize hyaluronic acid (HA). [1] HA is used in a wide range of medical, cosmetic, and biological products because of its high moisture retention and viscoelasticity qualities. [2] HA had originally been extracted from rooster combs in limited quantities. [3] However, challenges such as low yields, high production costs, and ethical issues associated with animal-derived HA has driven the development of microbial production methods for HA. [4]

Contents

Although there are other methods for instance chemical synthesis and modification, chemoenzymatic synthesis, enzymatic synthesis; microbial fermentation has been preferred to produce HA because of economical advantages. [5]

Bacterial production

Some bacteria, such as Streptococcus , develop an extracellular capsule that contains HA. This capsule functions as a molecular mimic to elude the host's immune system during the infection process in addition to providing adherence and protection. [6] Streptococcus zooepidemicus was used for first commercially HA fermentation, and that is most used bacteria since provides high yields although it is a pathogen microorganism. [7]

Encoding of HA production is carried out by hasA, hasB, hasC, hasD and hasE genes in S. zooepidemicus. [8]

Genes and their functions HA production in S. zooepidemicus
GeneEnzymeFunctionReference
hasAHyaluronic acid synthaseHA synthesis and

transport

[9]
hasBUDP-glucose dehydrogenaseUDP-GlcA

biosynthesis

[10] [11]
hasCUDP-glucose pyrophosphorylaseUDP-GlcA

biosynthesis

[12]
hasDAcetyltransferase and

pyrophosphorylase (bifunctional)

UDP-GlcNAc

biosynthesis

[13]
hasEPhosphoglucoisomeraseUDP-GlcNAc

biosynthesis

[13]

Genetically modified producers were developed such as Kluysveromyces  lactis, [14]   Lactococcus  lactis , [15] Bacillus  subtilis , [16] Escherichia  coli , [17]   and Corynebacterium glutamicum [18] [19] because of S. zooepidemicus’s pathogeny.

Biological process

Intracellular factors

Metabolism

Intermediates are used from  pathways  essential  to  support cell  growth,  such  as  the  production  of  organic  acids,  polysaccharides during the HA production. [20] HA is not an essential metabolite, and it competes other metabolites to attend the carbon flux in the cell. [4] Reduction potential of S. zooepidemicus may have a role in hyaluronic acid production, because 2 NAD+ are consumed during the synthesis of one monomer. Although NAD+ does not control HA synthesis when NADH oxidase over-expressed, [21] it has a big role in biomass formation.

Some studies showed that balanced intracellular concentration of precursors and their fluxes balanced provides higher molecular weight such as UDP-acetylglucosamine concentration. [22] [23] Enzymes such as hyaluronidase, [24] β-glucuronidase [25] of S. zooepidemicus decrease yield of HA. HA concentration is increased by deletion of associated genes of these enzymes. [24] [25]

On the other hand, some enzymes induce HA production such as sucrose-6-phosphatate hydrolase, [26] and hyaluronan synthase. [27] Using combined approaches with these two type enzymes is a good strategy for high yield HA production. [20]

Membrane

HA is produced around the cell, serving as a barrier against the host immune system by the bacteria. Only 8% of HA remains as attached the cell when cells arrived stationary phase. Biosurfactants such as sodium dodecyl sulfate (SDS) are used to gain this product. [28] Hyaluronan synthase, that is a membrane-binding enzyme, is one of the factors that reduces the production of HA. Hyaluronan synthase limits hyaluronic acid production by affecting cell morphology. [28]

Environmental factors

pH

Organic acids formed during HA production by S. zooepidemicus cause pH to decrease [20] Although HA production without pH control is cheaper, it prefers since provides high hyaluronic acid yields. [29] [30]

Temperature

HA production is affected regarding to yield and molecular weight by temperature. [31] HA production increases while bacterial cells are growing above 37 °C. However, HA yield decreases while molecular weight is higher with fermentation under 32 °C. [30]

Aeration

Although S. zooepidemicus is an aerotolerant anaerobe, hyaluronic acid production is affected by oxygen because NADH/NAD+ balance of cells changes with oxygen amount. Controlling oxygen during the cultivation via agitation rate provides increase both HA yield and molecular weight. [32]

Culture Media Components

The carbon source is one of the media components that has effects on production of microbial HA. [20] Although the glucose [33] [34] is most used one as a carbon source for the HA production; molasses, [35] sucrose, [36] and maltose [32] are used for microbial production.

HA production needs also many amino acids in the culture media therefore nitrogen source concentration has a key. [37]

See also

References

  1. Serra M, Casas A, Toubarro D, Barros AN, Teixeira JA (February 2023). "Microbial Hyaluronic Acid Production: A Review". Molecules. 28 (5): 2084. doi: 10.3390/molecules28052084 . PMC   10004376 . PMID   36903332.
  2. Sze JH, Brownlie JC, Love CA (June 2016). "Biotechnological production of hyaluronic acid: a mini review". 3 Biotech. 6 (1): 67. doi:10.1007/s13205-016-0379-9. PMC   4754297 . PMID   28330137.
  3. Ciriminna R, Scurria A, Pagliaro M (2021). "Microbial production of hyaluronic acid: the case of an emergent technology in the bioeconomy". Biofuels, Bioproducts and Biorefining. 15 (6): 1604–1610. doi: 10.1002/bbb.2285 . ISSN   1932-104X.
  4. 1 2 Chong BF, Blank LM, Mclaughlin R, Nielsen LK (January 2005). "Microbial hyaluronic acid production". Applied Microbiology and Biotechnology. 66 (4): 341–351. doi:10.1007/s00253-004-1774-4. PMID   15599518.
  5. Shikina EV, Kovalevsky RA, Shirkovskaya AI, Toukach PV (2022). "Prospective bacterial and fungal sources of hyaluronic acid: A review". Computational and Structural Biotechnology Journal. 20: 6214–6236. doi:10.1016/j.csbj.2022.11.013. PMC   9676211 . PMID   36420162.
  6. Wessels MR, Moses AE, Goldberg JB, DiCesare TJ (October 1991). "Hyaluronic acid capsule is a virulence factor for mucoid group A streptococci". Proceedings of the National Academy of Sciences of the United States of America. 88 (19): 8317–8321. Bibcode:1991PNAS...88.8317W. doi: 10.1073/pnas.88.19.8317 . PMC   52499 . PMID   1656437.
  7. Torres-Acosta MA, Castaneda-Aponte HM, Mora-Galvez LM, Gil-Garzon MR, Banda-Magaña MP, Marcellin E, et al. (2021-07-21). "Comparative Economic Analysis Between Endogenous and Recombinant Production of Hyaluronic Acid". Frontiers in Bioengineering and Biotechnology. 9: 680278. doi: 10.3389/fbioe.2021.680278 . PMC   8334870 . PMID   34368093.
  8. Zhang Y, Luo K, Zhao Q, Qi Z, Nielsen LK, Liu H (April 2016). "Genetic and biochemical characterization of genes involved in hyaluronic acid synthesis in Streptococcus zooepidemicus". Applied Microbiology and Biotechnology. 100 (8): 3611–3620. doi:10.1007/s00253-016-7286-1. PMID   26758299.
  9. Crater DL, van de Rijn I (August 1995). "Hyaluronic acid synthesis operon (has) expression in group A streptococci". The Journal of Biological Chemistry. 270 (31): 18452–18458. doi: 10.1074/jbc.270.31.18452 . PMID   7629171.
  10. Dougherty BA, van de Rijn I (April 1993). "Molecular characterization of hasB from an operon required for hyaluronic acid synthesis in group A streptococci. Demonstration of UDP-glucose dehydrogenase activity". The Journal of Biological Chemistry. 268 (10): 7118–7124. doi: 10.1016/S0021-9258(18)53153-7 . PMID   8463246.
  11. Chen J, Gao J, Yu Y, Yang S (May 2019). "A hyaluronan-based polysaccharide peptide generated by a genetically modified Streptococcus zooepidemicus". Carbohydrate Research. 478: 25–32. doi:10.1016/j.carres.2019.04.005. PMID   31042589.
  12. Crater DL, Dougherty BA, van de Rijn I (December 1995). "Molecular characterization of hasC from an operon required for hyaluronic acid synthesis in group A streptococci. Demonstration of UDP-glucose pyrophosphorylase activity". The Journal of Biological Chemistry. 270 (48): 28676–28680. doi: 10.1074/jbc.270.48.28676 . PMID   7499387.
  13. 1 2 Blank LM, Hugenholtz P, Nielsen LK (July 2008). "Evolution of the hyaluronic acid synthesis (has) operon in Streptococcus zooepidemicus and other pathogenic streptococci". Journal of Molecular Evolution. 67 (1): 13–22. Bibcode:2008JMolE..67...13B. doi:10.1007/s00239-008-9117-1. PMID   18551332.
  14. V Gomes AM, Netto JH, Carvalho LS, Parachin NS (August 2019). "Heterologous Hyaluronic Acid Production in Kluyveromyces lactis". Microorganisms. 7 (9): 294. doi: 10.3390/microorganisms7090294 . PMC   6780701 . PMID   31466214.
  15. Jeeva P, Shanmuga Doss S, Sundaram V, Jayaraman G (June 2019). "Production of controlled molecular weight hyaluronic acid by glucostat strategy using recombinant Lactococcus lactis cultures". Applied Microbiology and Biotechnology. 103 (11): 4363–4375. doi:10.1007/s00253-019-09769-0. PMID   30968163.
  16. Westbrook AW, Ren X, Moo-Young M, Chou CP (May 2018). "Application of hydrocarbon and perfluorocarbon oxygen vectors to enhance heterologous production of hyaluronic acid in engineered Bacillus subtilis". Biotechnology and Bioengineering. 115 (5): 1239–1252. doi:10.1002/bit.26551. PMID   29384194.
  17. Lai ZW, Teo CH (2019). "Cloning and expression of hyaluronan synthase (hasA) in recombinant Escherichia coli BL21 and its hyaluronic acid production in shake flask culture". Malaysian Journal of Microbiology. doi: 10.21161/mjm.190444 . ISSN   2231-7538.
  18. Hoffmann J, Altenbuchner J (September 2014). "Hyaluronic acid production with Corynebacterium glutamicum: effect of media composition on yield and molecular weight". Journal of Applied Microbiology. 117 (3): 663–678. doi:10.1111/jam.12553. PMID   24863652.
  19. Karami M, Shahraky MK, Ranjbar M, Tabandeh F, Morshedi D, Aminzade S (January 2021). "Preparation, purification, and characterization of low-molecular-weight hyaluronic acid". Biotechnology Letters. 43 (1): 133–142. doi:10.1007/s10529-020-03035-4. PMID   33131008.
  20. 1 2 3 4 Harth ML, Furlan FF, Horta AC (2024-03-27). "Microbial hyaluronic acid production in the 21 century: a roadmap toward high production, tailored molecular weight". Observatório de la Economía Latinoamericana. 22 (3): e3913. doi: 10.55905/oelv22n3-185 . ISSN   1696-8352.
  21. Chong BF, Nielsen LK (January 2003). "Amplifying the cellular reduction potential of Streptococcus zooepidemicus". Journal of Biotechnology. 100 (1): 33–41. doi:10.1016/S0168-1656(02)00239-0. PMID   12413784.
  22. Badle SS, Jayaraman G, Ramachandran KB (July 2014). "Ratio of intracellular precursors concentration and their flux influences hyaluronic acid molecular weight in Streptococcus zooepidemicus and recombinant Lactococcus lactis". Bioresource Technology. 163: 222–227. Bibcode:2014BiTec.163..222B. doi:10.1016/j.biortech.2014.04.027. PMID   24814248.
  23. Jagannath S, Ramachandran K (2010). "Influence of competing metabolic processes on the molecular weight of hyaluronic acid synthesized by Streptococcus zooepidemicus". Biochemical Engineering Journal. 48 (2): 148–158. doi:10.1016/j.bej.2009.09.003. ISSN   1369-703X.
  24. 1 2 Pourzardosht N, Rasaee MJ (June 2017). "Improved Yield of High Molecular Weight Hyaluronic Acid Production in a Stable Strain of Streptococcus zooepidemicus via the Elimination of the Hyaluronidase-Encoding Gene". Molecular Biotechnology. 59 (6): 192–199. doi:10.1007/s12033-017-0005-z. PMID   28500482.
  25. 1 2 Krahulec J, Krahulcová J (July 2006). "Increase in hyaluronic acid production by Streptococcus equi subsp. zooepidemicus strain deficient in beta-glucuronidase in laboratory conditions". Applied Microbiology and Biotechnology. 71 (4): 415–422. doi:10.1007/s00253-005-0173-9. PMID   16292534.
  26. Zhang X, Wang M, Li T, Fu L, Cao W, Liu H (December 2016). "Construction of efficient Streptococcus zooepidemicus strains for hyaluoronic acid production based on identification of key genes involved in sucrose metabolism". AMB Express. 6 (1): 121. doi: 10.1186/s13568-016-0296-7 . PMC   5125315 . PMID   27896786.
  27. Zakeri A, Rasaee MJ, Pourzardosht N (December 2017). "Enhanced hyluronic acid production in Streptococcus zooepidemicus by over expressing HasA and molecular weight control with Niscin and glucose". Biotechnology Reports. 16: 65–70. doi:10.1016/j.btre.2017.02.007. PMC   5727345 . PMID   29296591.
  28. 1 2 Duan XJ, Yang L, Zhang X, Tan WS (April 2008). "Effect of oxygen and shear stress on molecular weight of hyaluronic acid". Journal of Microbiology and Biotechnology. 18 (4): 718–724. PMID   18467866.
  29. Amado IR, Vázquez JA, Pastrana L, Teixeira JA (2017). "Microbial production of hyaluronic acid from agro-industrial by-products: Molasses and corn steep liquor". Biochemical Engineering Journal. 117: 181–187. Bibcode:2017BioEJ.117..181A. doi:10.1016/j.bej.2016.09.017. hdl: 10261/140221 .
  30. 1 2 Liu J, Wang Y, Li Z, Ren Y, Zhao Y, Zhao G (October 2018). "Efficient production of high-molecular-weight hyaluronic acid with a two-stage fermentation". RSC Advances. 8 (63): 36167–36171. Bibcode:2018RSCAd...836167L. doi:10.1039/C8RA07349J. PMC   9088804 . PMID   35558483.
  31. Li Y, Li G, Zhao X, Shao Y, Wu M, Ma T (June 2019). "Regulation of hyaluronic acid molecular weight and titer by temperature in engineered Bacillus subtilis". 3 Biotech. 9 (6): 225. doi:10.1007/s13205-019-1749-x. PMC   6529495 . PMID   31139540.
  32. 1 2 Chong BF, Nielsen LK (2003). "Aerobic cultivation of Streptococcus zooepidemicus and the role of NADH oxidase". Biochemical Engineering Journal. Biopolymers. 16 (2): 153–162. Bibcode:2003BioEJ..16..153F. doi:10.1016/S1369-703X(03)00031-7. ISSN   1369-703X.
  33. Attia YA, Kobeasy MI, Samer M (July 2018). "Evaluation of magnetic nanoparticles influence on hyaluronic acid production from Streptococcus equi". Carbohydrate Polymers. 192: 135–142. doi:10.1016/j.carbpol.2018.03.037. PMID   29691005.
  34. Abdullah Thaidi NI, Mohamad R, Wasoh H, Kapri MR, Ghazali AB, Tan JS, et al. (February 2023). "Development of In Situ Product Recovery (ISPR) System Using Amberlite IRA67 for Enhanced Biosynthesis of Hyaluronic Acid by Streptococcus zooepidemicus". Life. 13 (2): 558. Bibcode:2023Life...13..558A. doi: 10.3390/life13020558 . PMC   9966800 . PMID   36836914.
  35. Shukla P, Anand S, Srivastava P, Mishra A (September 2022). "Hyaluronic acid production by utilizing agro-industrial waste cane molasses". 3 Biotech. 12 (9): 208. doi:10.1007/s13205-022-03265-5. PMC   9352846 . PMID   35935546.
  36. Pan NC, Biz G, Baldo C, Celligoi MA (2019). "Factorial design in fermentation medium development for hyaluronic acid production by Streptococcus zooepidemicus". Acta Scientiarum. Technology. 42: e42729. doi: 10.4025/actascitechnol.v42i1.42729 . ISSN   1807-8664.
  37. Armstrong DC, Cooney MJ, Johns MR (1997). "Growth and amino acid requirements of hyaluronic-acid-producing Streptococcus zooepidemicus". Applied Microbiology and Biotechnology. 47 (3): 309–312. doi:10.1007/s002530050932. ISSN   1432-0614.