Corynebacterium glutamicum

Last updated

Corynebacterium glutamicum
C glutamicum visualized using scanning electron microscopy.tif
C. glutamicum under scanning electron microscopy.
Scientific classification OOjs UI icon edit-ltr.svg
Domain: Bacteria
Phylum: Actinomycetota
Class: Actinomycetia
Order: Mycobacteriales
Family: Corynebacteriaceae
Genus: Corynebacterium
Species:
C. glutamicum
Binomial name
Corynebacterium glutamicum
(Kinoshita et al. 1958) Abe et al. 1967 (Approved Lists 1980)
Synonyms [1] [2]
  • Brevibacterium divaricatumSu and Yamada 1960 (Approved Lists 1980)
  • "Brevibacterium flavum" Okumura et al. 1962
  • Corynebacterium liliumLee and Good 1963 (Approved Lists 1980)
  • "Micrococcus glutamicus" Kinoshita et al. 1958

Corynebacterium glutamicum is a Gram-positive, rod-shaped bacterium that is used industrially for large-scale production of amino acids. [3] [4] [5] While originally identified in a screen for organisms secreting L-glutamate, mutants of C. glutamicum have also been identified that produce various other amino acids. [6]

Contents

Due to its industrial importance, several clones of C. glutamicum have been sequenced by both industry and academic groups. [5] Furthermore, small RNA data was obtained by RNA-Seq in C. glutamicum ATCC 13032. [7] The metabolism of this strain has been reconstructed and is available in the form of a genome-scale metabolic model. [8]

See also

Related Research Articles

<span class="mw-page-title-main">Stop codon</span> Codon that marks the end of a protein-coding sequence

In molecular biology, a stop codon is a codon that signals the termination of the translation process of the current protein. Most codons in messenger RNA correspond to the addition of an amino acid to a growing polypeptide chain, which may ultimately become a protein; stop codons signal the termination of this process by binding release factors, which cause the ribosomal subunits to disassociate, releasing the amino acid chain.

<span class="mw-page-title-main">Histidine</span> Chemical compound

Histidine (symbol His or H) is an essential amino acid that is used in the biosynthesis of proteins. It contains an α-amino group (which is in the protonated –NH3+ form under biological conditions), a carboxylic acid group (which is in the deprotonated –COO form under biological conditions), and an imidazole side chain (which is partially protonated), classifying it as a positively charged amino acid at physiological pH. Initially thought essential only for infants, it has now been shown in longer-term studies to be essential for adults also. It is encoded by the codons CAU and CAC.

<span class="mw-page-title-main">Translation (biology)</span> Cellular process of protein synthesis

In biology, translation is the process in living cells in which proteins are produced using RNA molecules as templates. The generated protein is a sequence of amino acids. This sequence is determined by the sequence of nucleotides in the RNA. The nucleotides are considered three at a time. Each such triple results in addition of one specific amino acid to the protein being generated. The matching from nucleotide triple to amino acid is called the genetic code. The translation is performed by a large complex of functional RNA and proteins called ribosomes. The entire process is called gene expression.

<span class="mw-page-title-main">Isocitrate dehydrogenase</span> Class of enzymes

Isocitrate dehydrogenase (IDH) (EC 1.1.1.42) and (EC 1.1.1.41) is an enzyme that catalyzes the oxidative decarboxylation of isocitrate, producing alpha-ketoglutarate (α-ketoglutarate) and CO2. This is a two-step process, which involves oxidation of isocitrate (a secondary alcohol) to oxalosuccinate (a ketone), followed by the decarboxylation of the carboxyl group beta to the ketone, forming alpha-ketoglutarate. In humans, IDH exists in three isoforms: IDH3 catalyzes the third step of the citric acid cycle while converting NAD+ to NADH in the mitochondria. The isoforms IDH1 and IDH2 catalyze the same reaction outside the context of the citric acid cycle and use NADP+ as a cofactor instead of NAD+. They localize to the cytosol as well as the mitochondrion and peroxisome.

<i>Corynebacterium</i> Genus of bacteria

Corynebacterium is a genus of Gram-positive bacteria and most are aerobic. They are bacilli (rod-shaped), and in some phases of life they are, more specifically, club-shaped, which inspired the genus name.

<span class="mw-page-title-main">Metagenomics</span> Study of genes found in the environment

Metagenomics is the study of genetic material recovered directly from environmental or clinical samples by a method called sequencing. The broad field may also be referred to as environmental genomics, ecogenomics, community genomics or microbiomics.

<span class="mw-page-title-main">Homoserine</span> Chemical compound

Homoserine (also called isothreonine) is an α-amino acid with the chemical formula HO2CCH(NH2)CH2CH2OH. L-Homoserine is not one of the common amino acids encoded by DNA. It differs from the proteinogenic amino acid serine by insertion of an additional -CH2- unit into the backbone. Homoserine, or its lactone form, is the product of a cyanogen bromide cleavage of a peptide by degradation of methionine.

<i>Micrococcus luteus</i> Species of bacterium

Micrococcus luteus is a Gram-positive to Gram-variable, nonmotile, tetrad-arranging, pigmented, saprotrophic coccus bacterium in the family Micrococcaceae. It is urease and catalase positive. An obligate aerobe, M. luteus is found in soil, dust, water and air, and as part of the normal microbiota of the mammalian skin. The bacterium also colonizes the human mouth, mucosae, oropharynx and upper respiratory tract.

<span class="mw-page-title-main">Cyanophycin</span>

Cyanophycin, also known as CGP or multi-L-arginyl-poly, is a non-protein, non-ribosomally produced amino acid polymer composed of an aspartic acid backbone and arginine side groups.

<span class="mw-page-title-main">Lysine riboswitch</span>

The Lysine riboswitch is a metabolite binding RNA element found within certain messenger RNAs that serve as a precision sensor for the amino acid lysine. Allosteric rearrangement of mRNA structure is mediated by ligand binding, and this results in modulation of gene expression. Lysine riboswitch are most abundant in Bacillota and Gammaproteobacteria where they are found upstream of a number of genes involved in lysine biosynthesis, transport and catabolism. The lysine riboswitch has also been identified independently and called the L box.

In taxonomy, Thermococcus is a genus of thermophilic Archaea in the family the Thermococcaceae.

In taxonomy, Natrialba is a genus of the Natrialbaceae. The genus consists of many diverse species that can survive extreme environmental niches, especially they are capable to live in the waters saturated or nearly saturated with salt (halophiles). They have certain adaptations to live within their salty environments. For example, their cellular machinery is adapted to high salt concentrations by having charged amino acids on their surfaces, allowing the cell to keep its water molecules around these components. The osmotic pressure and these amino acids help to control the amount of salt within the cell.

Rhodobacter sphaeroides is a kind of purple bacterium; a group of bacteria that can obtain energy through photosynthesis. Its best growth conditions are anaerobic phototrophy and aerobic chemoheterotrophy in the absence of light. R. sphaeroides is also able to fix nitrogen. It is remarkably metabolically diverse, as it is able to grow heterotrophically via fermentation and aerobic and anaerobic respiration. Such a metabolic versatility has motivated the investigation of R. sphaeroides as a microbial cell factory for biotechnological applications.

<span class="mw-page-title-main">Microbiology</span> Study of microscopic organisms

Microbiology is the scientific study of microorganisms, those being of unicellular (single-celled), multicellular, or acellular. Microbiology encompasses numerous sub-disciplines including virology, bacteriology, protistology, mycology, immunology, and parasitology.

Computational Resources for Drug Discovery (CRDD) is one of the important silico modules of Open Source for Drug Discovery (OSDD). The CRDD web portal provides computer resources related to drug discovery on a single platform. It provides computational resources for researchers in computer-aided drug design, a discussion forum, and resources to maintain a wiki related to drug discovery, predict inhibitors, and predict the ADME-Tox property of molecules. One of the major objectives of CRDD is to promote open source software in the field of chemoinformatics and pharmacoinformatics.

<i>Acidithiobacillus thiooxidans</i> Species of bacterium

Acidithiobacillus thiooxidans, formerly known as Thiobacillus thiooxidans until its reclassification into the newly designated genus Acidithiobacillus of the Acidithiobacillia subclass of Pseudomonadota, is a Gram-negative, rod-shaped bacterium that uses sulfur as its primary energy source. It is mesophilic, with a temperature optimum of 28 °C. This bacterium is commonly found in soil, sewer pipes, and cave biofilms called snottites. A. thiooxidans is used in the mining technique known as bioleaching, where metals are extracted from their ores through the action of microbes.

Corynebacterium efficiens is a thermotolerant, glutamic acid-producing species of bacteria from soil and vegetables. Its type strain is YS-314T.

Lysine Exporters are a superfamily of transmembrane proteins which export amino acids, lipids and heavy metal ions. They provide ionic homeostasis, play a role in cell envelope assembly, and protect from excessive concentrations of heavy metals in cytoplasm. The superfamily was named based on the early discovery of the LysE carrier protein of Corynebacterium glutamicum.

<span class="mw-page-title-main">Industrial microbiology</span>

Industrial microbiology is a branch of biotechnology that applies microbial sciences to create industrial products in mass quantities, often using microbial cell factories. There are multiple ways to manipulate a microorganism in order to increase maximum product yields. Introduction of mutations into an organism may be accomplished by introducing them to mutagens. Another way to increase production is by gene amplification, this is done by the use of plasmids, and vectors. The plasmids and/ or vectors are used to incorporate multiple copies of a specific gene that would allow more enzymes to be produced that eventually cause more product yield. The manipulation of organisms in order to yield a specific product has many applications to the real world like the production of some antibiotics, vitamins, enzymes, amino acids, solvents, alcohol and daily products. Microorganisms play a big role in the industry, with multiple ways to be used. Medicinally, microbes can be used for creating antibiotics in order to treat infection. Microbes can also be used for the food industry as well. Microbes are very useful in creating some of the mass produced products that are consumed by people. The chemical industry also uses microorganisms in order to synthesize amino acids and organic solvents. Microbes can also be used in an agricultural application for use as a biopesticide instead of using dangerous chemicals and or inoculants to help plant proliferation.

<span class="mw-page-title-main">PKNOX2</span> Protein-coding gene in the species Homo sapiens

PBX/Knotted 1 Homeobox 2 (PKNOX2) protein belongs to the three amino acid loop extension (TALE) class of homeodomain proteins, and is encoded by PKNOX2 gene in humans. The protein regulates the transcription of other genes and affects anatomical development.

References

  1. Tatsumi, Nami; Inui, Masayuki (14 August 2012). Corynebacterium glutamicum: Biology and Biotechnology. Springer Science & Business Media. p. 336. ISBN   978-3-642-29857-8.
  2. Lv, Yangyong; Juanjun, Liao; Wu, Zhanhong; et al. (February 2012). "Genome Sequence of Corynebacterium glutamicum ATCC 14067, Which Provides Insight into Amino Acid Biosynthesis in Coryneform Bacteria". Journal of Bacteriology . 194 (3): 742–743. doi:10.1128/JB.06514-11. PMC   3264075 . PMID   22247536.
  3. Kinoshita, Shukuo; Udaka, Shigezo; Shimono, Masakazu (1957), "Studies on the amino acid fermentation. Part 1. Production of L-glutamic acid by various microorganisms", Journal of General and Applied Microbiology, 3 (3): 193–205, doi: 10.2323/jgam.3.193 , PMID   15965888 {{citation}}: CS1 maint: multiple names: authors list (link)
  4. Udaka, Shigezo (1960), "Screening method for microorganisms accumulating metabolites and its use in the isolation of Micrococcus glutamicus", Journal of Bacteriology, 79 (5): 754–755, doi:10.1128/jb.79.5.754-755.1960, PMC   278770 , PMID   13840150
  5. 1 2 Kalinowski, J; Bathe, B; Bartels, D; et al. (4 September 2003). "The complete Corynebacterium glutamicum ATCC 13032 genome sequence and its impact on the production of l-aspartate-derived amino acids and vitamins". Journal of Biotechnology. 104 (1–3): 5–25. doi:10.1016/S0168-1656(03)00154-8. PMID   12948626.
  6. Zahoor A; Lindner SN; Wendisch VF (October 2012). "Metabolic Engineering of Corynebacterium glutamicum Aimed at Alternative Carbon Sources and New Products". Computational and Structural Biotechnology Journal. 3 (4): e201210004. doi:10.5936/csbj.201210004. PMC   3962153 . PMID   24688664.
  7. Mentz, Almut; Neshat, Armin; Pfeifer-Sancar, Katharina; et al. (2013-10-19). "Comprehensive discovery and characterization of small RNAs in Corynebacterium glutamicum ATCC 13032". BMC Genomics. 14 (1): 714. doi: 10.1186/1471-2164-14-714 . ISSN   1471-2164. PMC   4046766 . PMID   24138339.
  8. Feierabend, Martina; Renz, Alina; Zelle, Elisabeth; et al. (2021). "High-Quality Genome-Scale Reconstruction of Corynebacterium glutamicum ATCC 13032". Frontiers in Microbiology. 12 (10): 3432. doi: 10.3389/fmicb.2021.750206 . ISSN   1664-302X. PMC   8634658 . PMID   34867870.