Microbiome-wide association study

Last updated

A microbiome-wide association study (MWAS), otherwise known as a metagenome-wide association study (MGWAS), is a statistical methodology used to examine the full metagenome of a defined microbiome in various organisms to determine if some feature (as example, gene or species) of the microbiome is associated with a host trait. MWAS has been adopted by the field of metagenomics from the widely used genome-wide association study (GWAS).

Results of microbiome wide association analyses using single-OTU regression method between operational taxonomic units and residual feed intake (RFI) and feed conversion ratio (FCR). In the plots, the solid and dashed lines represent significance and suggestive significance at 5 and 10% family-wise type I error rates, respectively Manhattan Plot of Microbiome Wide Association Plot.webp
Results of microbiome wide association analyses using single-OTU regression method between operational taxonomic units and residual feed intake (RFI) and feed conversion ratio (FCR). In the plots, the solid and dashed lines represent significance and suggestive significance at 5 and 10% family-wise type I error rates, respectively

While MWAS is phonetically and conceptually tied to GWAS there are several key differentiations:

There are several ways to classify which feature of the microbiome will be used in a MWAS. MWAS can be assessed using a specific taxonomic level (species, genus, [8] phyla, etc.), operational taxonomic unit (OTU) [1] or amplicon sequence variant (ASV), transcriptome, [9] proteome, [10] and more. The approach used depends upon the research hypothesis as each method will often give differing results.

Often, a taxonomic level or OTU/ASV based approach is used to determine the correlations between the specific microbiome feature and the desired phenotype. Several methods can be employed, such as machine learning approaches like random forests, [11] and deep learning. [12] Feature association can also be established with programs like DESeq2 and ANCOM. However, correlations established by the wide array of tools available may not always translate into causality. Researchers determine causality through sequential testing. [13] Newer methods have explored inference of digital twins of microbial ecosystem to address some modeling challenges arising from the diversity of microbes in such environments, inter-host variability, and compositionality of measurements. [14]

References

  1. 1 2 Aliakbari, Amir; Zemb, Olivier; Cauquil, Laurent; Barilly, Céline; Billon, Yvon; Gilbert, Hélène (2022-04-25). "Microbiability and microbiome-wide association analyses of feed efficiency and performance traits in pigs". Genetics Selection Evolution. 54 (1): 29. doi: 10.1186/s12711-022-00717-7 . ISSN   1297-9686. PMC   9036775 . PMID   35468740.
  2. MetaHIT Consortium; Qin, Junjie; Li, Ruiqiang; Raes, Jeroen; Arumugam, Manimozhiyan; Burgdorf, Kristoffer Solvsten; Manichanh, Chaysavanh; Nielsen, Trine; Pons, Nicolas; Levenez, Florence; Yamada, Takuji; Mende, Daniel R.; Li, Junhua; Xu, Junming; Li, Shaochuan (2010-03-04). "A human gut microbial gene catalogue established by metagenomic sequencing". Nature. 464 (7285): 59–65. Bibcode:2010Natur.464...59.. doi:10.1038/nature08821. ISSN   0028-0836. PMC   3779803 . PMID   20203603.
  3. Gilbert, Jack A.; Quinn, Robert A.; Debelius, Justine; Xu, Zhenjiang Z.; Morton, James; Garg, Neha; Jansson, Janet K.; Dorrestein, Pieter C.; Knight, Rob (2016-07-07). "Microbiome-wide association studies link dynamic microbial consortia to disease" . Nature. 535 (7610): 94–103. Bibcode:2016Natur.535...94G. doi:10.1038/nature18850. ISSN   0028-0836. PMID   27383984. S2CID   4455429.
  4. Koenig, Jeremy E.; Spor, Aymé; Scalfone, Nicholas; Fricker, Ashwana D.; Stombaugh, Jesse; Knight, Rob; Angenent, Largus T.; Ley, Ruth E. (2011-03-15). "Succession of microbial consortia in the developing infant gut microbiome". Proceedings of the National Academy of Sciences. 108 (supplement_1): 4578–4585. Bibcode:2011PNAS..108.4578K. doi: 10.1073/pnas.1000081107 . ISSN   0027-8424. PMC   3063592 . PMID   20668239.
  5. Vandeputte, Doris; De Commer, Lindsey; Tito, Raul Y.; Kathagen, Gunter; Sabino, João; Vermeire, Séverine; Faust, Karoline; Raes, Jeroen (2021-11-18). "Temporal variability in quantitative human gut microbiome profiles and implications for clinical research". Nature Communications. 12 (1): 6740. Bibcode:2021NatCo..12.6740V. doi:10.1038/s41467-021-27098-7. ISSN   2041-1723. PMC   8602282 . PMID   34795283.
  6. Gloor, Gregory B.; Macklaim, Jean M.; Pawlowsky-Glahn, Vera; Egozcue, Juan J. (2017-11-15). "Microbiome Datasets Are Compositional: And This Is Not Optional". Frontiers in Microbiology. 8: 2224. doi: 10.3389/fmicb.2017.02224 . ISSN   1664-302X. PMC   5695134 . PMID   29187837.
  7. Aitchison, John; Greenacre, Michael (2002-10-08). "Biplots of compositional data". Journal of the Royal Statistical Society Series C: Applied Statistics. 51 (4): 375–392. doi:10.1111/1467-9876.00275. hdl: 10230/1046 . ISSN   0035-9254.
  8. Davenport, Emily R.; Cusanovich, Darren A.; Michelini, Katelyn; Barreiro, Luis B.; Ober, Carole; Gilad, Yoav (2015-11-03). White, Bryan A (ed.). "Genome-Wide Association Studies of the Human Gut Microbiota". PLOS ONE. 10 (11): e0140301. Bibcode:2015PLoSO..1040301D. doi: 10.1371/journal.pone.0140301 . ISSN   1932-6203. PMC   4631601 . PMID   26528553.
  9. Huang, Hechen; Ren, Zhigang; Gao, Xingxing; Hu, Xiaoyi; Zhou, Yuan; Jiang, Jianwen; Lu, Haifeng; Yin, Shengyong; Ji, Junfang; Zhou, Lin; Zheng, Shusen (2020-11-23). "Integrated analysis of microbiome and host transcriptome reveals correlations between gut microbiota and clinical outcomes in HBV-related hepatocellular carcinoma". Genome Medicine. 12 (1): 102. doi: 10.1186/s13073-020-00796-5 . ISSN   1756-994X. PMC   7682083 . PMID   33225985.
  10. Riddell, Nina; Crewther, Sheila G. (2017-01-30). "Integrated Comparison of GWAS, Transcriptome, and Proteomics Studies Highlights Similarities in the Biological Basis of Animal and Human Myopia". Investigative Ophthalmology & Visual Science. 58 (1): 660–669. doi: 10.1167/iovs.16-20618 . ISSN   1552-5783. PMID   28135361.
  11. Zajac, Diana J.; Green, Stefan J.; Johnson, Lance A.; Estus, Steven (2021-08-03). "APOE Genetics Influence Murine Gut Microbiome". doi: 10.21203/rs.3.rs-746611/v1 .{{cite journal}}: Cite journal requires |journal= (help)
  12. Zhu, Qiang; Li, Bojing; He, Tingting; Li, Guangrong; Jiang, Xingpeng (2020-02-15). "Robust biomarker discovery for microbiome-wide association studies" . Methods. 173: 44–51. doi:10.1016/j.ymeth.2019.06.012. PMID   31238097. S2CID   195660885.
  13. Surana, Neeraj K.; Kasper, Dennis L. (2017-12-14). "Moving beyond microbiome-wide associations to causal microbe identification". Nature. 552 (7684): 244–247. Bibcode:2017Natur.552..244S. doi:10.1038/nature25019. ISSN   0028-0836. PMC   5730484 . PMID   29211710.
  14. Sizemore, Nicholas; Oliphant, Kaitlyn; Zheng, Ruolin; Martin, Camilia R.; Claud, Erika C.; Chattopadhyay, Ishanu (2024-04-12). "A digital twin of the infant microbiome to predict neurodevelopmental deficits". Science Advances. 10 (15): eadj0400. Bibcode:2024SciA...10J.400S. doi:10.1126/sciadv.adj0400. ISSN   2375-2548. PMC   11006218 . PMID   38598636.