In statistics, the multiple comparisons, multiplicity or multiple testing problem occurs when one considers a set of statistical inferences simultaneously [1] or estimates a subset of parameters selected based on the observed values. [2]
The larger the number of inferences made, the more likely erroneous inferences become. Several statistical techniques have been developed to address this problem, for example, by requiring a stricter significance threshold for individual comparisons, so as to compensate for the number of inferences being made. Methods for family-wise error rate give the probability of false positives resulting from the multiple comparisons problem.
The problem of multiple comparisons received increased attention in the 1950s with the work of statisticians such as Tukey and Scheffé. Over the ensuing decades, many procedures were developed to address the problem. In 1996, the first international conference on multiple comparison procedures took place in Tel Aviv. [3] This is an active research area with work being done by, for example Emmanuel Candès and Vladimir Vovk.
Multiple comparisons arise when a statistical analysis involves multiple simultaneous statistical tests, each of which has a potential to produce a "discovery". A stated confidence level generally applies only to each test considered individually, but often it is desirable to have a confidence level for the whole family of simultaneous tests. [4] Failure to compensate for multiple comparisons can have important real-world consequences, as illustrated by the following examples:
In both examples, as the number of comparisons increases, it becomes more likely that the groups being compared will appear to differ in terms of at least one attribute. Our confidence that a result will generalize to independent data should generally be weaker if it is observed as part of an analysis that involves multiple comparisons, rather than an analysis that involves only a single comparison.
For example, if one test is performed at the 5% level and the corresponding null hypothesis is true, there is only a 5% risk of incorrectly rejecting the null hypothesis. However, if 100 tests are each conducted at the 5% level and all corresponding null hypotheses are true, the expected number of incorrect rejections (also known as false positives or Type I errors) is 5. If the tests are statistically independent from each other (i.e. are performed on independent samples), the probability of at least one incorrect rejection is approximately 99.4%.
The multiple comparisons problem also applies to confidence intervals. A single confidence interval with a 95% coverage probability level will contain the true value of the parameter in 95% of samples. However, if one considers 100 confidence intervals simultaneously, each with 95% coverage probability, the expected number of non-covering intervals is 5. If the intervals are statistically independent from each other, the probability that at least one interval does not contain the population parameter is 99.4%.
Techniques have been developed to prevent the inflation of false positive rates and non-coverage rates that occur with multiple statistical tests.
The following table defines the possible outcomes when testing multiple null hypotheses. Suppose we have a number m of null hypotheses, denoted by: H1, H2, ..., Hm. Using a statistical test, we reject the null hypothesis if the test is declared significant. We do not reject the null hypothesis if the test is non-significant. Summing each type of outcome over all Hi yields the following random variables:
Null hypothesis is true (H0) | Alternative hypothesis is true (HA) | Total | |
---|---|---|---|
Test is declared significant | V | S | R |
Test is declared non-significant | U | T | |
Total | m |
In m hypothesis tests of which are true null hypotheses, R is an observable random variable, and S, T, U, and V are unobservable random variables.
Graphs are unavailable due to technical issues. There is more info on Phabricator and on MediaWiki.org. |
This section may need to be cleaned up. It has been merged from Multiple testing correction . |
Multiple testing correction refers to making statistical tests more stringent in order to counteract the problem of multiple testing. The best known such adjustment is the Bonferroni correction, but other methods have been developed. Such methods are typically designed to control the family-wise error rate or the false discovery rate.
If m independent comparisons are performed, the family-wise error rate (FWER), is given by
Hence, unless the tests are perfectly positively dependent (i.e., identical), increases as the number of comparisons increases. If we do not assume that the comparisons are independent, then we can still say:
which follows from Boole's inequality. Example:
There are different ways to assure that the family-wise error rate is at most . The most conservative method, which is free of dependence and distributional assumptions, is the Bonferroni correction . A marginally less conservative correction can be obtained by solving the equation for the family-wise error rate of independent comparisons for . This yields , which is known as the Šidák correction. Another procedure is the Holm–Bonferroni method, which uniformly delivers more power than the simple Bonferroni correction, by testing only the lowest p-value () against the strictest criterion, and the higher p-values () against progressively less strict criteria. [5] .
For continuous problems, one can employ Bayesian logic to compute from the prior-to-posterior volume ratio. Continuous generalizations of the Bonferroni and Šidák correction are presented in. [6]
Traditional methods for multiple comparisons adjustments focus on correcting for modest numbers of comparisons, often in an analysis of variance. A different set of techniques have been developed for "large-scale multiple testing", in which thousands or even greater numbers of tests are performed. For example, in genomics, when using technologies such as microarrays, expression levels of tens of thousands of genes can be measured, and genotypes for millions of genetic markers can be measured. Particularly in the field of genetic association studies, there has been a serious problem with non-replication — a result being strongly statistically significant in one study but failing to be replicated in a follow-up study. Such non-replication can have many causes, but it is widely considered that failure to fully account for the consequences of making multiple comparisons is one of the causes. [7] It has been argued that advances in measurement and information technology have made it far easier to generate large datasets for exploratory analysis, often leading to the testing of large numbers of hypotheses with no prior basis for expecting many of the hypotheses to be true. In this situation, very high false positive rates are expected unless multiple comparisons adjustments are made.
For large-scale testing problems where the goal is to provide definitive results, the family-wise error rate remains the most accepted parameter for ascribing significance levels to statistical tests. Alternatively, if a study is viewed as exploratory, or if significant results can be easily re-tested in an independent study, control of the false discovery rate (FDR) [8] [9] [10] is often preferred. The FDR, loosely defined as the expected proportion of false positives among all significant tests, allows researchers to identify a set of "candidate positives" that can be more rigorously evaluated in a follow-up study. [11]
The practice of trying many unadjusted comparisons in the hope of finding a significant one is a known problem, whether applied unintentionally or deliberately, is sometimes called "p-hacking". [12] [13]
A basic question faced at the outset of analyzing a large set of testing results is whether there is evidence that any of the alternative hypotheses are true. One simple meta-test that can be applied when it is assumed that the tests are independent of each other is to use the Poisson distribution as a model for the number of significant results at a given level α that would be found when all null hypotheses are true.[ citation needed ] If the observed number of positives is substantially greater than what should be expected, this suggests that there are likely to be some true positives among the significant results.
For example, if 1000 independent tests are performed, each at level α = 0.05, we expect 0.05 × 1000 = 50 significant tests to occur when all null hypotheses are true. Based on the Poisson distribution with mean 50, the probability of observing more than 61 significant tests is less than 0.05, so if more than 61 significant results are observed, it is very likely that some of them correspond to situations where the alternative hypothesis holds. A drawback of this approach is that it overstates the evidence that some of the alternative hypotheses are true when the test statistics are positively correlated, which commonly occurs in practice. [ citation needed ]. On the other hand, the approach remains valid even in the presence of correlation among the test statistics, as long as the Poisson distribution can be shown to provide a good approximation for the number of significant results. This scenario arises, for instance, when mining significant frequent itemsets from transactional datasets. Furthermore, a careful two stage analysis can bound the FDR at a pre-specified level. [14]
Another common approach that can be used in situations where the test statistics can be standardized to Z-scores is to make a normal quantile plot of the test statistics. If the observed quantiles are markedly more dispersed than the normal quantiles, this suggests that some of the significant results may be true positives.[ citation needed ]
A statistical hypothesis test is a method of statistical inference used to decide whether the data sufficiently support a particular hypothesis. A statistical hypothesis test typically involves a calculation of a test statistic. Then a decision is made, either by comparing the test statistic to a critical value or equivalently by evaluating a p-value computed from the test statistic. Roughly 100 specialized statistical tests have been defined.
In statistical hypothesis testing, a result has statistical significance when a result at least as "extreme" would be very infrequent if the null hypothesis were true. More precisely, a study's defined significance level, denoted by , is the probability of the study rejecting the null hypothesis, given that the null hypothesis is true; and the p-value of a result, , is the probability of obtaining a result at least as extreme, given that the null hypothesis is true. The result is statistically significant, by the standards of the study, when . The significance level for a study is chosen before data collection, and is typically set to 5% or much lower—depending on the field of study.
In statistics, the power of a binary hypothesis test is the probability that the test correctly rejects the null hypothesis when a specific alternative hypothesis is true. It is commonly denoted by , and represents the chances of a true positive detection conditional on the actual existence of an effect to detect. Statistical power ranges from 0 to 1, and as the power of a test increases, the probability of making a type II error by wrongly failing to reject the null hypothesis decreases.
In null-hypothesis significance testing, the -value is the probability of obtaining test results at least as extreme as the result actually observed, under the assumption that the null hypothesis is correct. A very small p-value means that such an extreme observed outcome would be very unlikely under the null hypothesis. Even though reporting p-values of statistical tests is common practice in academic publications of many quantitative fields, misinterpretation and misuse of p-values is widespread and has been a major topic in mathematics and metascience. In 2016, the American Statistical Association (ASA) made a formal statement that "p-values do not measure the probability that the studied hypothesis is true, or the probability that the data were produced by random chance alone" and that "a p-value, or statistical significance, does not measure the size of an effect or the importance of a result" or "evidence regarding a model or hypothesis". That said, a 2019 task force by ASA has issued a statement on statistical significance and replicability, concluding with: "p-values and significance tests, when properly applied and interpreted, increase the rigor of the conclusions drawn from data".
Data dredging is the misuse of data analysis to find patterns in data that can be presented as statistically significant, thus dramatically increasing and understating the risk of false positives. This is done by performing many statistical tests on the data and only reporting those that come back with significant results.
In statistics, Duncan's new multiple range test (MRT) is a multiple comparison procedure developed by David B. Duncan in 1955. Duncan's MRT belongs to the general class of multiple comparison procedures that use the studentized range statistic qr to compare sets of means.
In statistics, the false discovery rate (FDR) is a method of conceptualizing the rate of type I errors in null hypothesis testing when conducting multiple comparisons. FDR-controlling procedures are designed to control the FDR, which is the expected proportion of "discoveries" that are false. Equivalently, the FDR is the expected ratio of the number of false positive classifications to the total number of positive classifications. The total number of rejections of the null include both the number of false positives (FP) and true positives (TP). Simply put, FDR = FP /. FDR-controlling procedures provide less stringent control of Type I errors compared to family-wise error rate (FWER) controlling procedures, which control the probability of at least one Type I error. Thus, FDR-controlling procedures have greater power, at the cost of increased numbers of Type I errors.
In statistics, family-wise error rate (FWER) is the probability of making one or more false discoveries, or type I errors when performing multiple hypotheses tests.
In statistical hypothesis testing, a type I error, or a false positive, is the rejection of the null hypothesis when it is actually true. For example, an innocent person may be convicted. A type II error, or a false negative, is the failure to reject a null hypothesis that is actually false. For example: a guilty person may be not convicted.
In statistics, the Bonferroni correction is a method to counteract the multiple comparisons problem.
In statistics, the Holm–Bonferroni method, also called the Holm method or Bonferroni–Holm method, is used to counteract the problem of multiple comparisons. It is intended to control the family-wise error rate (FWER) and offers a simple test uniformly more powerful than the Bonferroni correction. It is named after Sture Holm, who codified the method, and Carlo Emilio Bonferroni.
In statistics, the closed testing procedure is a general method for performing more than one hypothesis test simultaneously.
In statistics, when performing multiple comparisons, a false positive ratio is the probability of falsely rejecting the null hypothesis for a particular test. The false positive rate is calculated as the ratio between the number of negative events wrongly categorized as positive and the total number of actual negative events.
The Newman–Keuls or Student–Newman–Keuls (SNK)method is a stepwise multiple comparisons procedure used to identify sample means that are significantly different from each other. It was named after Student (1927), D. Newman, and M. Keuls. This procedure is often used as a post-hoc test whenever a significant difference between three or more sample means has been revealed by an analysis of variance (ANOVA). The Newman–Keuls method is similar to Tukey's range test as both procedures use studentized range statistics. Unlike Tukey's range test, the Newman–Keuls method uses different critical values for different pairs of mean comparisons. Thus, the procedure is more likely to reveal significant differences between group means and to commit type I errors by incorrectly rejecting a null hypothesis when it is true. In other words, the Neuman-Keuls procedure is more powerful but less conservative than Tukey's range test.
In statistics, a false coverage rate (FCR) is the average rate of false coverage, i.e. not covering the true parameters, among the selected intervals.
In statistics, the Šidák correction, or Dunn–Šidák correction, is a method used to counteract the problem of multiple comparisons. It is a simple method to control the family-wise error rate. When all null hypotheses are true, the method provides familywise error control that is exact for tests that are stochastically independent, conservative for tests that are positively dependent, and liberal for tests that are negatively dependent. It is credited to a 1967 paper by the statistician and probabilist Zbyněk Šidák. The Šidák method can be used to determine the statistical significance, and evaluate adjusted P value and confidence intervals.
One of the application of Student's t-test is to test the location of one sequence of independent and identically distributed random variables. If we want to test the locations of multiple sequences of such variables, Šidák correction should be applied in order to calibrate the level of the Student's t-test. Moreover, if we want to test the locations of nearly infinitely many sequences of variables, then Šidák correction should be used, but with caution. More specifically, the validity of Šidák correction depends on how fast the number of sequences goes to infinity.
Misuse of p-values is common in scientific research and scientific education. p-values are often used or interpreted incorrectly; the American Statistical Association states that p-values can indicate how incompatible the data are with a specified statistical model. From a Neyman–Pearson hypothesis testing approach to statistical inferences, the data obtained by comparing the p-value to a significance level will yield one of two results: either the null hypothesis is rejected, or the null hypothesis cannot be rejected at that significance level. From a Fisherian statistical testing approach to statistical inferences, a low p-value means either that the null hypothesis is true and a highly improbable event has occurred or that the null hypothesis is false.
In statistical hypothesis testing, specifically multiple hypothesis testing, the q-value in the Storey procedure provides a means to control the positive false discovery rate (pFDR). Just as the p-value gives the expected false positive rate obtained by rejecting the null hypothesis for any result with an equal or smaller p-value, the q-value gives the expected pFDR obtained by rejecting the null hypothesis for any result with an equal or smaller q-value.
The harmonic mean p-value(HMP) is a statistical technique for addressing the multiple comparisons problem that controls the strong-sense family-wise error rate (this claim has been disputed). It improves on the power of Bonferroni correction by performing combined tests, i.e. by testing whether groups of p-values are statistically significant, like Fisher's method. However, it avoids the restrictive assumption that the p-values are independent, unlike Fisher's method. Consequently, it controls the false positive rate when tests are dependent, at the expense of less power (i.e. a higher false negative rate) when tests are independent. Besides providing an alternative to approaches such as Bonferroni correction that controls the stringent family-wise error rate, it also provides an alternative to the widely-used Benjamini-Hochberg procedure (BH) for controlling the less-stringent false discovery rate. This is because the power of the HMP to detect significant groups of hypotheses is greater than the power of BH to detect significant individual hypotheses.
{{cite journal}}
: CS1 maint: multiple names: authors list (link){{cite journal}}
: CS1 maint: multiple names: authors list (link)