Millstone Hill

Last updated
Millstone Hill Antenna
Millstone Hill Radar - Haystack Observatory - DSC04019.JPG
Alternative names Millstone Hill Blue pencil.svg
Observatory Millstone Hill Observatory Blue pencil.svg
Location(s) United States
Coordinates 42°37′N71°29′W / 42.62°N 71.49°W / 42.62; -71.49 Coordinates: 42°37′N71°29′W / 42.62°N 71.49°W / 42.62; -71.49 Blue pencil.svg
Telescope style radio telescope Blue pencil.svg
Diameter 150 ft (46 m) Blue pencil.svg
Usa edcp relief location map.png
Red pog.svg
Location of Millstone Hill

The Millstone Hill Steerable Antenna, or MISA, is a fully steerable dish antenna, 46 metres (151 ft) in diameter, designed by the Stanford Research Institute (SRI) in 1959. It is currently located at MIT Haystack Observatory in Westford, Massachusetts.

SRI International United States research institute

SRI International (SRI) is an American nonprofit scientific research institute and organization headquartered in Menlo Park, California. The trustees of Stanford University established SRI in 1946 as a center of innovation to support economic development in the region.

Haystack Observatory American observatory affiliated with MIT

Haystack Observatory is an astronomical observatory owned by Massachusetts Institute of Technology (MIT). It is located in Westford, Massachusetts (US), approximately 45 kilometers (28 mi) northwest of Boston. Haystack was initially built by MIT's Lincoln Laboratory for the United States Air Force and was known as Haystack Microwave Research Facility. Construction began in 1960, and the antenna began operating in 1964. In 1970 the facility was transferred to MIT, which then formed the Northeast Radio Observatory Corporation (NEROC) with a number of other universities to operate the site as the Haystack Observatory. As of January 2012, a total of nine institutions participated in NEROC.

Contents

History

MISA was originally installed at the Sagamore Hill Radio Observatory in Hamilton, Massachusetts in 1963. The antenna operated at that location until 1978, at which time it was relocated to Millstone Hill. Since that time it has been primarily used as a UHF radar antenna to provide measurements of the near space environment using the incoherent scatter radar technique. It is one of two surviving dish antennas of this type in the world with the other antenna being located at the Stanford University radio science field site in Stanford, California. MISA is used to provide wide radar coverage in latitude and longitude.

Sagamore Hill Radio Observatory

The Sagamore Hill Solar Radio Observatory is a solar radio observatory located in Hamilton, Massachusetts, that operates on a daily basis to obtain scientific observations of the Sun. It is a functional component of the Radio Solar Telescope Network (RSTN).

Hamilton, Massachusetts Town in Massachusetts, United States

Hamilton is a rural-suburban town in the eastern central portion of Essex County in eastern Massachusetts, United States. At the 2010 census, it had a population of 7,764. Currently the town has no manufacturing industry and no industrially-zoned land.

Radar object detection system based on radio waves

Radar is a detection system that uses radio waves to determine the range, angle, or velocity of objects. It can be used to detect aircraft, ships, spacecraft, guided missiles, motor vehicles, weather formations, and terrain. A radar system consists of a transmitter producing electromagnetic waves in the radio or microwaves domain, a transmitting antenna, a receiving antenna and a receiver and processor to determine properties of the object(s). Radio waves from the transmitter reflect off the object and return to the receiver, giving information about the object's location and speed.

Capabilities

MISA is a broad-based observatory capable of addressing a wide range of atmospheric science investigations. The incoherent scatter radar facility at Millstone Hill has been supported by the National Science Foundation since 1974 for studies of the Earth's upper atmosphere and ionosphere. During this time the facility has evolved from a part-time research operation sharing radar cooling and power supply elements with the M.I.T. Lincoln Laboratory Millstone satellite tracking radar, to a separately funded, operationally independent system dedicated to upper atmospheric research. The scientific capability of the Millstone Hill facility was greatly expanded in 1978 with the installation of a fully steerable 46 meter antenna to complement the 67 meter fixed zenith pointing dish.

National Science Foundation United States government agency

The National Science Foundation (NSF) is a United States government agency that supports fundamental research and education in all the non-medical fields of science and engineering. Its medical counterpart is the National Institutes of Health. With an annual budget of about US$7.8 billion, the NSF funds approximately 24% of all federally supported basic research conducted by the United States' colleges and universities. In some fields, such as mathematics, computer science, economics, and the social sciences, the NSF is the major source of federal backing.

Ionosphere The ionized part of Earths upper atmosphere

The ionosphere is the ionized part of Earth's upper atmosphere, from about 60 km (37 mi) to 1,000 km (620 mi) altitude, a region that includes the thermosphere and parts of the mesosphere and exosphere. The ionosphere is ionized by solar radiation. It plays an important role in atmospheric electricity and forms the inner edge of the magnetosphere. It has practical importance because, among other functions, it influences radio propagation to distant places on the Earth.

Zenith

The zenith is an imaginary point directly "above" a particular location, on the imaginary celestial sphere. "Above" means in the vertical direction opposite to the apparent gravitational force at that location. The opposite direction, i.e. the direction in which gravity pulls, is toward the nadir. The zenith is the "highest" point on the celestial sphere.

The favorable location of Millstone Hill at sub-auroral latitudes combined with the great operational range afforded by the steerable antenna permit observations over a latitude span encompassing the region between the polar cap and the near-equatorial ionosphere. Since 1982 the Haystack Observatory Atmospheric Sciences Group has been supported for operating the Millstone Hill research radar as a part of the incoherent scatter radar chain and for associated studies of the auroral and sub-auroral ionosphere and thermosphere. The meridional radar chain extends from Sondrestrom Upper Atmospheric Research Facility in Kangerlussuaq, Greenland through Millstone Hill at mid-latitudes, beyond Arecibo at low latitudes, to the Jicamarca facility at the magnetic equator in Peru. The radar chain forms an integral part of the NSF-supported CEDAR (Coupling, Energetics, and Dynamics of Atmospheric Regions) observing network and Millstone Hill observations and analysis have contributed extensively to the successes of the CEDAR initiative.

Equator Intersection of a spheres surface with the plane perpendicular to the spheres axis of rotation and midway between the poles

An equator of a rotating spheroid is its zeroth circle of latitude (parallel). It is the imaginary line on the spheroid, equidistant from its poles, dividing it into northern and southern hemispheres. In other words, it is the intersection of the spheroid with the plane perpendicular to its axis of rotation and midway between its geographical poles.

The thermosphere is the layer in the Earth's atmosphere directly above the mesosphere and below the exosphere. Within this layer of the atmosphere, ultraviolet radiation causes photoionization/photodissociation of molecules, creating ions in the ionosphere. Taking its name from the Greek θερμός meaning heat, the thermosphere begins at about 80 km (50 mi) above sea level. At these high altitudes, the residual atmospheric gases sort into strata according to molecular mass. Thermospheric temperatures increase with altitude due to absorption of highly energetic solar radiation. Temperatures are highly dependent on solar activity, and can rise to 1,700 °C (3,100 °F) or more. Radiation causes the atmosphere particles in this layer to become electrically charged, enabling radio waves to be refracted and thus be received beyond the horizon. In the exosphere, beginning at about 600 km (375 mi) above sea level, the atmosphere turns into space, although by the criteria set for the definition of the Kármán line, the thermosphere itself is part of space.

Sondrestrom Upper Atmospheric Research Facility

The Sondrestrom Upper Atmospheric Research Facility is an ionospheric and atmospheric research facility situated about 15 km (9.3 mi) west of Kangerlussuaq, Greenland. It is commonly known around the town as Kellyville. The facility has been operational since the ionospheric radar was first constructed by SRI International at Stanford, California, then moved to Chatanika, Alaska, where it was operational from November 1971 to March 1982. It was transported to Kangerlussuaq in 1983.

Scatter technique

The Millstone Hill Radar uses Thomson backscatter from ionospheric electrons to deduce height- and time-resolved plasma drift velocities, electron and ion temperatures, electron densities, ion composition, and ion-neutral collision frequencies. These parameters provide further information about the neutral gas, neutral temperatures and winds, and electric fields present in the medium. The incoherent scatter technique provides observations of many of these parameters over an altitude range extending from less than 100 km to a thousand kilometers or more. Methods have been developed that allow these measurements to be made with an altitude resolution of hundreds of meters. The complete steerability of the radar allows horizontal gradients and structure to be examined along with vertical variations.

Backscatter

In physics, backscatter is the reflection of waves, particles, or signals back to the direction from which they came. It is a diffuse reflection due to scattering, as opposed to specular reflection as from a mirror. Backscattering has important applications in astronomy, photography, and medical ultrasonography. The opposite effect is forward scatter, e.g. when a translucent material like a cloud diffuses sunlight, giving soft light.

Electron subatomic particle with negative electric charge

The electron is a subatomic particle, symbol
e
or
β
, whose electric charge is negative one elementary charge. Electrons belong to the first generation of the lepton particle family, and are generally thought to be elementary particles because they have no known components or substructure. The electron has a mass that is approximately 1/1836 that of the proton. Quantum mechanical properties of the electron include an intrinsic angular momentum (spin) of a half-integer value, expressed in units of the reduced Planck constant, ħ. As it is a fermion, no two electrons can occupy the same quantum state, in accordance with the Pauli exclusion principle. Like all elementary particles, electrons exhibit properties of both particles and waves: they can collide with other particles and can be diffracted like light. The wave properties of electrons are easier to observe with experiments than those of other particles like neutrons and protons because electrons have a lower mass and hence a longer de Broglie wavelength for a given energy.

Related Research Articles

Aurora natural light display that occurs in the sky, primarily at high altitude (near the Arctic and Antarctic)

An aurora, sometimes referred to as polar lights, northern lights, southern lights, is a natural light display in the Earth's sky, predominantly seen in the high-latitude regions.

High Frequency Active Auroral Research Program an ionospheric research program

The High Frequency Active Auroral Research Program (HAARP) was initiated as an ionospheric research program jointly funded by the U.S. Air Force, the U.S. Navy, the University of Alaska Fairbanks, and the Defense Advanced Research Projects Agency (DARPA). It was designed and built by BAE Advanced Technologies (BAEAT). Its original purpose was to analyze the ionosphere and investigate the potential for developing ionospheric enhancement technology for radio communications and surveillance. As a university-owned facility, HAARP is a high-power, high-frequency transmitter used for study of the ionosphere.

<i>Nozomi</i> (spacecraft) Space probe

Nozomi was a planned and launched Mars-orbiting aeronomy probe. It did not reach Mars orbit due to electrical failures. The mission was terminated on December 31, 2003.

Swedish Institute of Space Physics

The Swedish Institute of Space Physics is a Swedish government agency. The institute's primary task is to carry out basic research, education and associated observatory activities in space physics, space technology and atmospheric physics.

The HIPAS Observatory was a research facility intended to study the ionosphere and its influence on radio communications.

EISCAT

EISCAT operates three incoherent scatter radar systems, at 224 MHz, 931 MHz in Northern Scandinavia and one at 500 MHz on Svalbard, used to study the interaction between the Sun and the Earth as revealed by disturbances in the ionosphere and magnetosphere. At the Ramfjordmoen facility, it also operates an ionospheric heater facility, similar to HAARP. Additional receiver stations are located in Sodankylä, Finland, and Kiruna, Sweden. The EISCAT Svalbard radar (ESR) is located in Longyearbyen, Norway. The EISCAT Headquarters are also located in Kiruna.

Incoherent scattering is a type of scattering phenomenon in physics. The term is most commonly used when referring to the scattering of an electromagnetic wave by random fluctuations in a gas of particles.

Super Dual Auroral Radar Network

The Super Dual Auroral Radar Network (SuperDARN) is an international scientific radar network consisting of 35 high frequency (HF) radars located in both the Northern and Southern Hemispheres. SuperDARN radars are primarily used to map high-latitude plasma convection in the F region of the ionosphere, but the radars are also used to study a wider range of geospace phenomena including field aligned currents, magnetic reconnection, geomagnetic storms and substorms, magnetospheric MHD waves, mesospheric winds via meteor ionization trails, and interhemispheric plasma convection asymmetries. The SuperDARN collaboration is composed of radars operated by JHU/APL, Virginia Tech, Dartmouth College, the Geophysical Institute at the University of Alaska Fairbanks, the Institute of Space and Atmospheric Studies at the University of Saskatchewan, the University of Leicester, Lancaster University, La Trobe University, and the Solar-Terrestrial Environment Laboratory at Nagoya University.

An electrojet is an electric current which travels around the E region of the Earth's ionosphere. There are two electrojets: above the magnetic equator, and near the Northern and Southern Polar Circles. Electrojets are Hall currents carried primarily by electrons at altitudes from 100 to 150 km. In this region the electron gyro frequency is much greater than the electron-neutral collision frequency. In contrast, the principal E region ions have gyrofrequencies much lower than the ion-neutral collision frequency.

Canadian Geospace Monitoring

Canadian Geospace Monitoring (CGSM) is a Canadian space science program that was initiated in 2005. CGSM is funded primarily by the Canadian Space Agency, and consists of networks of imagers, meridian scanning photometers, riometers, magnetometers, digital ionosondes, and High Frequency SuperDARN radars. The overarching objective of CGSM is to provide synoptic observations of the spatio-temporal evolution of the ionospheric thermodynamics and electrodynamics at auroral and polar latitudes over a large region of Canada.

An ionospheric heater, or an ionospheric HF pump facility, is a powerful radio wave transmitter with an array of antennas which is used for research of plasma turbulence, the ionosphere and upper atmosphere. These transmitters operate in the high frequency (HF) range (3-30 MHz) at which radio waves are reflected from the ionosphere back to the ground. With such facilities a range of plasma turbulence phenomena can be excited in a semi-controlled fashion from the ground, during conditions when the ionosphere is naturally quiet and not perturbed by for example aurora. This stimulus-response type of research complements passive observations of naturally excited phenomena to learn about the ionosphere and upper atmosphere.

Tor Hagfors Norwegian physicist

Tor Hagfors was a Norwegian scientist, radio astronomer, radar expert and a pioneer in the studies of the interactions between electromagnetic waves and plasma. In the early 1960s he was one of a handful of pioneering theorists that independently developed a theory that explained the scattering of radio waves by the free electrons in a plasma and applied the result to the ionosphere. He became founding director of the new EISCAT facilities that were then under construction in 1975, by which time he already been director at most of the other incoherent scatter radar facilities in the world. The asteroid 1985 VD1 is named 7279 Hagfors after him.

This is an index to articles about terms used in discussion of radio propagation.

Jicamarca Radio Observatory

The Jicamarca Radio Observatory (JRO) is the equatorial anchor of the Western Hemisphere chain of Incoherent Scatter Radar (ISR) observatories extending from Lima, Peru to Søndre Strømfjord, Greenland. JRO is the premier scientific facility in the world for studying the equatorial ionosphere. The Observatory is about half an hour drive inland (east) from Lima and 10 km from the Central Highway. The magnetic dip angle is about 1°, and varies slightly with altitude and year. The radar can accurately determine the direction of the Earth's magnetic field (B) and can be pointed perpendicular to B at altitudes throughout the ionosphere. The study of the equatorial ionosphere is rapidly becoming a mature field due, in large part, to the contributions made by JRO in radio science.

Unwin Radar

The Unwin Radar is a scientific radar array at Awarua, near Invercargill, New Zealand 46.51°S 168.38°E.

The index of physics articles is split into multiple pages due to its size.

KAIRA

The Kilpisjärvi Atmospheric Imaging Receiver Array (KAIRA) is an astronomical observatory operated by the Sodankylä Geophysical Observatory on behalf of Oulu University. It is located at Kilpisjärvi, Enontekiö near the border with Norway. It comprises two LOFAR-derived radio telescope systems and is capable of observing at HF and VHF radio frequencies. It is used for atmospheric, near-Earth space and astronomical research. KAIRA uses LOFAR phased-array antennas and digital signal-processing hardware. The phased array configuration has no moving parts and with digital control, allows KAIRA to quickly scan the sky, giving KAIRA a large field of view. KAIRA can produce a continuous all-sky image of the radio transparency of ionosphere, using cosmic radio noise for "illumination" (riometry). KAIRA can also obtain electron density profiles in the atmosphere. This allows the study of the interaction of the solar wind with the atmosphere, such as in aurora borealis and other space weather phenomena. In addition to near-space imaging, the use of KAIRA has been demonstrated for long-baseline interferometry observations of pulsars.

References