Milos R. Popovic

Last updated
Milos R. Popovic
Milos Popovic29-1x1REDUCED 1 1MB.jpg
Born
Alma mater
Known for
Contributions to stroke and spinal cord injury rehabilitation
Awards
  • 2014  UHN Inventor of the Year
  • 2008  Engineering Medal for Research and Development
Scientific career
Fields Neurorehabilitation
Institutions
Website http://reltoronto.ca/

Milos R. Popovic is a scientist specializing in Functional Electrical Stimulation (FES) and neurorehabilitation. As of 2018, he is Director of the KITE Research Institute at UHN Toronto Rehabilitation Institute (TRI), and a Professor with the Institute of Biomaterials and Biomedical Engineering at the University of Toronto. [1]

Contents

Education

Popovic received a Dipl. of Electrical Engineering from the University of Belgrade in his native Serbia in 1990. He then earned his Ph.D in Mechanical Engineering from the University of Toronto in 1996... [1] His Ph.D thesis was on Friction modelling and control, under supervision of Andrew Goldenberg. [2]

Career

Academic work

In July 2001, Popovic established The Rehabilitation Engineering Laboratory (REL) at the Lyndhurst Centre of Toronto Rehabilitation Institute. The laboratory supports multiple research groups, under supervision of 6 principal investigators, including the Popovic lab. In 2018, Popovic was appointed TRI's Director of Research. He is also the leader of the Neural Engineering and Therapeutics research team at iDAPT (Intelligent Design for Adaptation, Participation, and Technology), which works on translation of rehabilitative research info advanced therapeutic tools. [3]

Functional electrical stimulation

Functional electrical stimulation (FES) uses bursts of short electrical pulses to generate muscle contraction. Application of these electrical pulses to motor nerves results in generation of an action potential along the axon of that nerve towards its targeted muscle. [4] With electrodes placed on the skin over the muscle, individuals attempt to move their muscle by sending a signal with their brain to the muscle. The muscle is then stimulated by the system, causing a contraction which sends a signal from the muscle to the brain. Thus, a new neural pathway is formed, which improves recovery of voluntary movement. [5]

Popovic has led studies investigating the use of FES in the rehabilitation of muscular function for stroke victims with extremely limited arm and hand mobility in comparison with conventional therapy. One of the best-known publications is "Rehabilitation of Reaching and Grasping Function in Severe Hemiplegic Patients Using Functional Electrical Stimulation Therapy", conducted in 2008. Electrical impulses to activate muscles were used in combination with verbal cues, and over the course of the treatment period, less FES was necessary to achieve the desired movements. Patients using FES in the study showed significant improvement in object manipulation, palmar grip torque, and pinch grip pulling force when compared to those using only conventional therapy. [6]

Brain-machine interfaces

Popovic is involved in the development of various brain-machine interfaces (BMI) for use in humans, using implantable electrocorticographic (ECoG) and surface electroencephalographic (EEG) electrode. A neuroprosthesis study conducted using ECoG achieved high accuracy in producing intended grasp-and-release functionality in the hand. [7] Real-time asynchronous control of a remote-controlled car was achieved using a single EEG electrode to eliminate restrictions related to information transfer rates. [8] Work within this field tests the feasibility and functionality of using invasive and non-invasive physiological signals to improve implementation of FES as a rehabilitation method.

Compex Motion simulator

Popovic developed Compex Motion, a portable and programmable system used for transcutaneous FES, in collaboration with Swiss company Compex SA. The stimulator can be programmed to generate a variety of stimulation sequences, can be connected to other systems to increase channel capabilities, and can be controlled externally. The device can be used in the development of neuroprostheses, and muscle exercise systems. [9] This work provided the foundation for the use of FES in SCI rehabilitation.

Industry

In 2008, Popovic co-founded medical technology company MyndTec based on the FES system that has been a focus of his research. The firm develops MyndMove, a transcutaneous FES therapy to improve function and maximize independence for patients with stroke- and spinal-cord injury-related paralysis. [5]

Professional activities

In 2004, he was a co-founder of the Canadian National Spinal Cord Injury Conference, and since acts as a co-chair for the annual event. [1] As part of his work with iDAPT, he also contributed to the Spinal Cord Injury: A Manifesto for Change. [10]

Honours and awards

National level awards are listed below: [11]

Notable publications

Related Research Articles

Hemiparesis, or unilateral paresis, is weakness of one entire side of the body. Hemiplegia is, in its most severe form, complete paralysis of half of the body. Hemiparesis and hemiplegia can be caused by different medical conditions, including congenital causes, trauma, tumors, or stroke.

Spasticity is a feature of altered skeletal muscle performance with a combination of paralysis, increased tendon reflex activity, and hypertonia. It is also colloquially referred to as an unusual "tightness", stiffness, or "pull" of muscles.

<span class="mw-page-title-main">Tetraplegia</span> Paralysis of all four limbs and torso

Tetraplegia, also known as quadriplegia, is defined as the dysfunction or loss of motor and/or sensory function in the cervical area of the spinal cord. A loss of motor function can present as either weakness or paralysis leading to partial or total loss of function in the arms, legs, trunk, and pelvis; paraplegia is similar but affects the thoracic, lumbar, and sacral segments of the spinal cord and arm function is spared. The paralysis may be flaccid or spastic. A loss of sensory function can present as an impairment or complete inability to sense light touch, pressure, heat, pinprick/pain, and proprioception. In these types of spinal cord injury, it is common to have a loss of both sensation and motor control.

Rehabilitation of sensory and cognitive function typically involves methods for retraining neural pathways or training new neural pathways to regain or improve neurocognitive functioning that have been diminished by disease or trauma. The main objective outcome for rehabilitation is to assist in regaining physical abilities and improving performance. Three common neuropsychological problems treatable with rehabilitation are attention deficit/hyperactivity disorder (ADHD), concussion, and spinal cord injury. Rehabilitation research and practices are a fertile area for clinical neuropsychologists, rehabilitation psychologists, and others.

<span class="mw-page-title-main">Paraplegia</span> Impairment of motor and sensory functions in the lower limbs

Paraplegia, or paraparesis, is an impairment in motor or sensory function of the lower extremities. The word comes from Ionic Greek (παραπληγίη) "half-stricken". It is usually caused by spinal cord injury or a congenital condition that affects the neural (brain) elements of the spinal canal. The area of the spinal canal that is affected in paraplegia is either the thoracic, lumbar, or sacral regions. If four limbs are affected by paralysis, tetraplegia or quadriplegia is the correct term. If only one limb is affected, the correct term is monoplegia. Spastic paraplegia is a form of paraplegia defined by spasticity of the affected muscles, rather than flaccid paralysis.

<span class="mw-page-title-main">Functional electrical stimulation</span> Technique that uses low-energy electrical pulses

Functional electrical stimulation (FES) is a technique that uses low-energy electrical pulses to artificially generate body movements in individuals who have been paralyzed due to injury to the central nervous system. More specifically, FES can be used to generate muscle contraction in otherwise paralyzed limbs to produce functions such as grasping, walking, bladder voiding and standing. This technology was originally used to develop neuroprostheses that were implemented to permanently substitute impaired functions in individuals with spinal cord injury (SCI), head injury, stroke and other neurological disorders. In other words, a person would use the device each time he or she wanted to generate a desired function. FES is sometimes also referred to as neuromuscular electrical stimulation (NMES).

<span class="mw-page-title-main">Spinal cord injury</span> Injury to the main nerve bundle in the back of humans

A spinal cord injury (SCI) is damage to the spinal cord that causes temporary or permanent changes in its function. Symptoms may include loss of muscle function, sensation, or autonomic function in the parts of the body served by the spinal cord below the level of the injury. Injury can occur at any level of the spinal cord and can be complete, with a total loss of sensation and muscle function at lower sacral segments, or incomplete, meaning some nervous signals are able to travel past the injured area of the cord up to the Sacral S4-5 spinal cord segments. Depending on the location and severity of damage, the symptoms vary, from numbness to paralysis, including bowel or bladder incontinence. Long term outcomes also range widely, from full recovery to permanent tetraplegia or paraplegia. Complications can include muscle atrophy, loss of voluntary motor control, spasticity, pressure sores, infections, and breathing problems.

Neuroprosthetics is a discipline related to neuroscience and biomedical engineering concerned with developing neural prostheses. They are sometimes contrasted with a brain–computer interface, which connects the brain to a computer rather than a device meant to replace missing biological functionality.

Neural engineering is a discipline within biomedical engineering that uses engineering techniques to understand, repair, replace, or enhance neural systems. Neural engineers are uniquely qualified to solve design problems at the interface of living neural tissue and non-living constructs.

Monoplegia is paralysis of a single limb, usually an arm. Common symptoms associated with monoplegic patients are weakness, numbness, and pain in the affected limb. Monoplegia is a type of paralysis that falls under hemiplegia. While hemiplegia is paralysis of half of the body, monoplegia is localized to a single limb or to a specific region of the body. Monoplegia of the upper limb is sometimes referred to as brachial monoplegia, and that of the lower limb is called crural monoplegia. Monoplegia in the lower extremities is not as common of an occurrence as in the upper extremities. Monoparesis is a similar, but less severe, condition because one limb is very weak, not paralyzed. For more information, see paresis.

Neurorehabilitation is a complex medical process which aims to aid recovery from a nervous system injury, and to minimize and/or compensate for any functional alterations resulting from it.

Neurostimulation is the purposeful modulation of the nervous system's activity using invasive or non-invasive means. Neurostimulation usually refers to the electromagnetic approaches to neuromodulation.

A gait trainer is a wheeled device that assists a person who is unable to walk independently to learn or relearn to walk safely and efficiently as part of gait training. Gait trainers are intended for children or adults with physical disabilities, to provide the opportunity to improve walking ability. A gait trainer offers both unweighting support and postural alignment to enable gait practice. It functions as a support walker and provides more assistance for balance and weight-bearing, than does a traditional rollator walker, or a walker with platform attachments. It also provides opportunities to stand and to bear weight in a safe, supported position.

When treating a person with a spinal cord injury, repairing the damage created by injury is the ultimate goal. By using a variety of treatments, greater improvements are achieved, and, therefore, treatment should not be limited to one method. Furthermore, increasing activity will increase his/her chances of recovery.

Neuromodulation is "the alteration of nerve activity through targeted delivery of a stimulus, such as electrical stimulation or chemical agents, to specific neurological sites in the body". It is carried out to normalize – or modulate – nervous tissue function. Neuromodulation is an evolving therapy that can involve a range of electromagnetic stimuli such as a magnetic field (rTMS), an electric current, or a drug instilled directly in the subdural space. Emerging applications involve targeted introduction of genes or gene regulators and light (optogenetics), and by 2014, these had been at minimum demonstrated in mammalian models, or first-in-human data had been acquired. The most clinical experience has been with electrical stimulation.

<span class="mw-page-title-main">Lumbar anterior root stimulator</span> Neuroprosthesis

A lumbar anterior root stimulator is a type of neuroprosthesis used in patients with a spinal cord injury or to treat some forms of chronic spinal pain. More specifically, the root stimulator can be used in patients who have lost proper bowel function due to damaged neurons related to gastrointestinal control and potentially allow paraplegics to exercise otherwise paralyzed leg muscles.

A peripheral nerve interface is the bridge between the peripheral nervous system and a computer interface which serves as a bi‐directional information transducer recording and sending signals between the human body and a machine processor. Interfaces to the nervous system usually take the form of electrodes for stimulation and recording, though chemical stimulation and sensing are possible. Research in this area is focused on developing peripheral nerve interfaces for the restoration of function following disease or injury to minimize associated losses. Peripheral nerve interfaces also enable electrical stimulation and recording of the peripheral nervous system to study the form and function of the peripheral nervous system. For example, recent animal studies have demonstrated high accuracy in tracking physiological meaningful measures, like joint angle. Many researchers also focus in the area of neuroprosthesis, linking the human nervous system to bionics in order to mimic natural sensorimotor control and function. Successful implantation of peripheral nerve interfaces depend on a number of factors which include appropriate indication, perioperative testing, differentiated planning, and functional training. Typically microelectrode devices are implanted adjacent to, around or within the nerve trunk to establish contact with the peripheral nervous system. Different approaches may be used depending on the type of signal desired and attainable.

Spinal cord injury research seeks new ways to cure or treat spinal cord injury in order to lessen the debilitating effects of the injury in the short or long term. There is no cure for SCI, and current treatments are mostly focused on spinal cord injury rehabilitation and management of the secondary effects of the condition. Two major areas of research include neuroprotection, ways to prevent damage to cells caused by biological processes that take place in the body after the injury, and neuroregeneration, regrowing or replacing damaged neural circuits.

<span class="mw-page-title-main">Paul Hunter Peckham</span> American academic

Paul Hunter Peckham is a professor of biomedical engineering and orthopedics at the Case Western Reserve University, and holds eight patents related to neural prosthetics. Peckham's research involves developing prostheses to restore function in the upper extremities for paralyzed individuals with spinal cord injury.

<span class="mw-page-title-main">Chet Moritz</span> American neural engineer

Chet T. Moritz is an American neural engineer, neuroscientist, physiologist, and academic researcher. He is an Associate Professor of Electrical and Computer Engineering, and holds joint appointments in the School of Medicine departments of Rehabilitation Medicine, and Physiology & Biophysics at the University of Washington.

References

  1. 1 2 3 "Milos Popovic | UHN Research". www.uhnresearch.ca. Retrieved 2019-02-14.
  2. Popović, Milos̆ R (1996). Friction modeling and control (Thesis). OCLC   46493472. ProQuest   304326344.
  3. "Neural Engineering and Therapeutics". 168.144.170.22. Retrieved 2019-02-15.
  4. L., Baker, Lucinda (2000). Neuromuscular electrical stimulation : a practical guide. Los Amigos Research & Education Institute, Inc. ISBN   0967633508. OCLC   43624410.{{cite book}}: CS1 maint: multiple names: authors list (link)
  5. 1 2 "Welcome Page". www.myndtec.com. Retrieved 2019-02-14.
  6. Thrasher, T. Adam; Zivanovic, Vera; McIlroy, William; Popovic, Milos R. (November 2008). "Rehabilitation of Reaching and Grasping Function in Severe Hemiplegic Patients Using Functional Electrical Stimulation Therapy". Neurorehabilitation and Neural Repair. 22 (6): 706–714. doi:10.1177/1545968308317436. PMID   18971385. S2CID   7016540.
  7. Márquez-Chin, C; Popovic, M R; Cameron, T; Lozano, A M; Chen, R (November 2009). "Control of a neuroprosthesis for grasping using off-line classification of electrocorticographic signals: case study". Spinal Cord. 47 (11): 802–808. doi: 10.1038/sc.2009.41 . PMID   19381156.
  8. Màrquez-Chin, César; Sanin, Egor; Silva, Jorge; Popovic, Milos (April 2009). "Real-Time Two-Dimensional Asynchronous Control of a Remote-Controlled Car Using a Single Electroencephalographic Electrode". Topics in Spinal Cord Injury Rehabilitation. 14 (4): 62–68. doi:10.1310/sci1404-62.
  9. Popovic, M.R.; Keller, T.; Pappas, I.P.I.; Muller, P.Y. (2001). "Compex motion — New portable transcutaneous stimulator for neuroprosthetic applications". 2001 European Control Conference (ECC). pp. 3945–3950. doi:10.23919/ecc.2001.7076551. ISBN   978-3-9524173-6-2. S2CID   29671106.
  10. "IDAPT.COM". idapt.com. Retrieved 2019-02-15.
  11. "Milos R. Popovic |". ims.utoronto.ca. Retrieved 2019-02-08.