Mineral bonded wood wool board

Last updated
Wood wool lightweight board (surface structure) Holzafaserbeton gross.JPG
Wood wool lightweight board (surface structure)

Mineral bonded wood wool boards (WW boards) are building boards made of wood wool fibres, water and the binding agents cement, caustic magnesia and gypsum. Mineral bound wood wool boards are used in a wide range of applications, e.g., thermal insulation, acoustic insulation, indoor decoration, etc.

Contents

Historical brand names include Ceban, Erulit, Fibrolith, [1] Frankotekt, Hapec, Hapri, [2] Heraklith, [3] Hincolith, Holwolith, Klimalit, Lenzolite, Lignolith, Lossius and Saalith. [4] Because of the term wool , laypersons sometimes mistake wood wool boards with wood fibre insulating boards, a different insulation material that does not contain mineral bindings.

In German speaking areas, because of their surface also known as sauerkraut plates. [5]

History

Wood wool boards were standardised in 1938 according to DIN 1101 and are therefore among the oldest insulation materials made of renewable raw materials. [6] This standard was replaced by European Standard EN 13168 in January 2002.

Materials and production

Wood wool boards and wood-wool layers in composite boards are generally manufactured using coniferous wood species, mainly spruce and pine. The wood logs are processed to make wood fibres of various widths, generally between 1mm and 3mm. After drying the wood, it is planed into long fibres in a wood wool machine. The fibres are then mixed with the binding agent (caustic magnesite or cement) in a water solution, in a mixer. Wood wool boards which are bound with magnesite are easily distinguishable by their beige colour. Boards which are bound with grey cement have a greyish colour. White cement is used to maintain the natural colour of the wood. The combination of wood wool fibres and binding agent is automatically fed into a moulding line to be shaped according to the required board dimensions (length, width and thickness). After pre-compaction, the endless row of moulds filled with the mixture is separated into individual moulds with a saw. The moulds are stacked on top of each other, pressed again and weighted so that they are perfectly flush with each other. After hardening of the binder (usually between 24 and 48 hours) the moulds are removed, the semi-finished boards are dried and cut to raw size. The products are then taken to the maturation stock where they will remain for a period that depends on type of binder and thickness. The boards can be subject to further processing in the finishing department, e.g. in case a special edge profile or board shape is needed. The whole production process is carried out in such way that the product meets the requirements set in EN 13168. [7]

Properties

Wood wool boards are rigid and very strong. Their thermal conductivity is higher than other insulation material between 0.070 and 0.100 W/(m.K) compared with mineral wool insulation materials to approximately 0.040 W/(m.K). But their specific thermal capacity and therefore summer heat insulation is higher than other materials, e.g. when installed in lofts’ pitched roofs, wood wool boards offer better properties than basic dry wall systems in terms of summer heat insulation. Wood wool boards can be made to offer a high degree of sound insulation (e.g. if they are plastered) or sound absorption performance (e.g. non-plastered boards) and a good moisture-regulating capacity thanks to their open structure. In the harmonized Euroclass system of reaction to fire performance of building products, wood wool boards can be classified as A2-s1, d0 according to EN 13501-1 Fire classification of construction products and building elements; Part 1: Classification using data from reaction to fire tests. [8]

In combination with other insulation materials (e.g mineral wool), the resistance against fire can reach up to two hundred forty minutes depending on the product’s thickness and setup.

Multi-layer lightweight building boards

Wood wool composite boards (WW-C boards) are a two- or three-layer combination of wood wool boards and various insulation materials (mineral fibre boards, EPS boards, XPS boards, etc…) The thickness of the wood wool layer in a composite board is at least 5 mm. Due to the higher insulation effect of the mineral or synthetic insulation layer, composite boards provide a higher level of thermal insulation relative to single wood wool boards.

See also

Related Research Articles

<span class="mw-page-title-main">Thermal insulation</span> Minimization of heat transfer

Thermal insulation is the reduction of heat transfer between objects in thermal contact or in range of radiative influence. Thermal insulation can be achieved with specially engineered methods or processes, as well as with suitable object shapes and materials.

Fiberglass or fibreglass is a common type of fiber-reinforced plastic using glass fiber. The fibers may be randomly arranged, flattened into a sheet called a chopped strand mat, or woven into glass cloth. The plastic matrix may be a thermoset polymer matrix—most often based on thermosetting polymers such as epoxy, polyester resin, or vinyl ester resin—or a thermoplastic.

<span class="mw-page-title-main">Mineral wool</span> Fiber made from spun molten minerals

Mineral wool is any fibrous material formed by spinning or drawing molten mineral or rock materials such as slag and ceramics.

<span class="mw-page-title-main">Engineered wood</span> Range of derivative wood products engineered for uniform and predictable structural performance

Engineered wood, also called mass timber, composite wood, man-made wood, or manufactured board, includes a range of derivative wood products which are manufactured by binding or fixing the strands, particles, fibres, or veneers or boards of wood, together with adhesives, or other methods of fixation to form composite material. The panels vary in size but can range upwards of 64 by 8 feet and in the case of cross-laminated timber (CLT) can be of any thickness from a few inches to 16 inches (410 mm) or more. These products are engineered to precise design specifications, which are tested to meet national or international standards and provide uniformity and predictability in their structural performance. Engineered wood products are used in a variety of applications, from home construction to commercial buildings to industrial products. The products can be used for joists and beams that replace steel in many building projects. The term mass timber describes a group of building materials that can replace concrete assemblies.

<span class="mw-page-title-main">Phenol formaldehyde resin</span> Chemical compound

Phenol formaldehyde resins (PF) are synthetic polymers obtained by the reaction of phenol or substituted phenol with formaldehyde. Used as the basis for Bakelite, PFs were the first commercial synthetic resins. They have been widely used for the production of molded products including billiard balls, laboratory countertops, and as coatings and adhesives. They were at one time the primary material used for the production of circuit boards but have been largely replaced with epoxy resins and fiberglass cloth, as with fire-resistant FR-4 circuit board materials.

Wood fibres are usually cellulosic elements that are extracted from trees and used to make materials including paper.

<span class="mw-page-title-main">Lamination</span> Technique of fusing layers of material

Lamination is the technique/process of manufacturing a material in multiple layers, so that the composite material achieves improved strength, stability, sound insulation, appearance, or other properties from the use of the differing materials, such as plastic. A laminate is a layered object or material assembled using heat, pressure, welding, or adhesives. Various coating machines, machine presses and calendering equipment are used.

Fibre-reinforced plastic is a composite material made of a polymer matrix reinforced with fibres. The fibres are usually glass, carbon, aramid, or basalt. Rarely, other fibres such as paper, wood, boron, or asbestos have been used. The polymer is usually an epoxy, vinyl ester, or polyester thermosetting plastic, though phenol formaldehyde resins are still in use.

<span class="mw-page-title-main">Glass wool</span> Insulating material made from fibers of glass

Glass wool is an insulating material made from glass fiber arranged using a binder into a texture similar to wool. The process traps many small pockets of air between the glass, and these small air pockets result in high thermal insulation properties. Glass wool is produced in rolls or in slabs, with different thermal and mechanical properties. It may also be produced as a material that can be sprayed or applied in place, on the surface to be insulated. The modern method for producing glass wool was invented by Games Slayter while he was working at the Owens-Illinois Glass Co.. He first applied for a patent for a new process to make glass wool in 1933.

<span class="mw-page-title-main">Fiber cement siding</span> Building material used to cover the exterior of a building

Fiber cement siding is a building material used to cover the exterior of a building in both commercial and domestic applications. Fiber cement is a composite material made of cement reinforced with cellulose fibers. Originally, asbestos was used as the reinforcing material but, due to safety concerns, that was replaced by cellulose in the 1980s. Fiber cement board may come pre-painted or pre-stained or can be done so after its installation.

<span class="mw-page-title-main">Fireproofing</span> Rendering something (structures, materials, etc.) resistant to fire, or incombustible

Fireproofing is rendering something resistant to fire, or incombustible; or material for use in making anything fire-proof. It is a passive fire protection measure. "Fireproof" or "fireproofing" can be used as a noun, verb or adjective; it may be hyphenated ("fire-proof").

Glass fiber reinforced concrete (GFRC) is a type of fiber-reinforced concrete. The product is also known as glassfibre reinforced concrete or GRC in British English. Glass fiber concretes are mainly used in exterior building façade panels and as architectural precast concrete. Somewhat similar materials are fiber cement siding and cement boards.

<span class="mw-page-title-main">Cement board</span> Backing board used in building construction

A cement board is a combination of cement and reinforcing fibers formed into sheets, of varying thickness that are typically used as a tile backing board. Cement board can be nailed or screwed to wood or steel studs to create a substrate for vertical tile and attached horizontally to plywood for tile floors, kitchen counters and backsplashes. It can be used on the exterior of buildings as a base for exterior plaster (stucco) systems and sometimes as the finish system itself.

<span class="mw-page-title-main">Building insulation material</span> Insulation material

Building insulation materials are building materials that form the thermal envelope of a building. As thermal insulation they reduce the heating energy requirement or the cooling load of buildings ; they can also provide soundproofing.

<span class="mw-page-title-main">Pipe insulation</span>

Pipe Insulation is thermal or acoustic insulation used on pipework.

<span class="mw-page-title-main">External wall insulation</span>

An external wall insulation system is a thermally insulated, protective, and decorative exterior cladding procedure involving the use of expanded polystyrene, mineral wool, polyurethane foam or phenolic foam, topped off with a reinforced cement based, mineral or synthetic finish and plaster.

<span class="mw-page-title-main">Sandwich panel</span> Structure made of three layers

A sandwich panel is any structure made of three layers: a low-density core, and a thin skin-layer bonded to each side. Sandwich panels are used in applications where a combination of high structural rigidity and low weight is required.

<span class="mw-page-title-main">Fibre cement</span> Type of composite construction material

Fibre cement is a composite building and construction material, used mainly in roofing and facade products because of its strength and durability. One common use is in fiber cement siding on buildings.

<span class="mw-page-title-main">Eternit</span> Type of fiber cement

Eternit is a registered trademark for a brand of fibre cement currently owned by the Belgian company Etex. Fibre is often applied in building and construction materials, mainly in roofing and facade products.

<span class="mw-page-title-main">Cladding (construction)</span> Layer of one material over another

Cladding is the application of one material over another to provide a skin or layer. In construction, cladding is used to provide a degree of thermal insulation and weather resistance, and to improve the appearance of buildings. Cladding can be made of any of a wide range of materials including wood, metal, brick, vinyl, and composite materials that can include aluminium, wood, blends of cement and recycled polystyrene, wheat/rice straw fibres. Rainscreen cladding is a form of weather cladding designed to protect against the elements, but also offers thermal insulation. The cladding does not itself need to be waterproof, merely a control element: it may serve only to direct water or wind safely away in order to control run-off and prevent its infiltration into the building structure. Cladding may also be a control element for noise, either entering or escaping. Cladding can become a fire risk by design or material.

References

  1. Fibrolith in the register information of the German Patent and Trademark Office , archivdate = 16 December 2017
  2. Hapri in the register information of the German Patent and Trademark Office , archivdate = 16 December 2017
  3. Heraklith in the register information of the German Patent and Trademark Office , archivdate = 16 December 2017
  4. F. Kollmann. Vergütete Hölzer und holzhaltige Bau- und Werkstoffe. Begriffe und Zeichen. pp. 42-45. Springer Verlag 1942 Berlin Heidelberg GmbH
  5. German Wikipedia Sauerkrautplatte , archivdate = 16 December 2017
  6. Fachagentur Nachwachsende Rohstoffe e. V. (Hrsg.): Dämmstoffe aus Nachwachsenden Rohstoffen. 2. Auflage. 2008, S. 24(-27).
  7. Website of the Energy Consultant Dipl.-Ing. Lars Nierobis , archivdate = 16 December 2017
  8. Fire classification of construction products and building elements , archivdate = 16 December 2017