This article needs more reliable medical references for verification or relies too heavily on primary sources .(March 2019) |
Minimal residual disease | |
---|---|
Other names | Molecular residual disease |
Minimal residual disease (MRD), also known as Molecular residual disease, is the name given to small numbers of cancer cells that remain in a person either during or after treatment when the patient is in remission (no symptoms or signs of disease). Sensitive molecular tests are either in development or available to test for MRD. These can measure minute levels of cancer cells in tissue samples, sometimes as low as one cancer cell in a million normal cells, either using DNA, RNA or proteins.
MRD detection is strongly associated with cancer recurrence. Often with a lead time of months relative to other forms of clinical evidence. [1] [2]
The tests are minimally invasive (involving a simple blood draw). Monitoring is performed every three to six months. [3] MRD monitoring may be performed as part of research or clinical trials, and some have been accepted for routine clinical use. MRD is a form of liquid biopsy, which has other applications such as multi-cancer screening tests. [4]
Molecular tests that uncover minimal residual disease are helpful for directing treatment and monitoring or preventing relapse.
MRD was originally described in hematological cancers such as adult acute myeloid leukemia. [5] [6] Subsequently MRD research has broadened out to other hematological malignancies such as Multiple Myeloma, [7] as well as to solid tumors.
In leukemia, a genetic abnormality in a single cell can cause it to then multiply rapidly, leading to a proliferation of specific cell types in the blood. Symptoms do not occur until the disease is advanced, and there are 1 kg or one trillion leukemic cells in the body.[ citation needed ]
The initial treatment with for example BCL2-inhibitors, FLT3-inhibitors, or IDH1/2-inhibitors, [8] may kill leukemic cells. However, pre-leukemic clones may survive treatment, and persist at frequencies of less than 0.1% in the bone marrow for months or years. [8]
This minimal residual disease can be identified by sensitive molecular tests such as DNA sequencing, but not by other methods such as viewing cells under a microscope. Hence the alternative name, molecular residual disease.
In cancer treatment, MRD testing has several important roles:
DNA tests are based on detecting circulating tumor DNA in the blood that contains cancer-specific DNA sequences. Modern techniques use next-generation sequencing to detect MRD. The detection method may be "tumor-informed", using mutation information from sequencing an individual's tumor tissue biopsy samples before subsequent MRD monitoring. [3] Or they may be "tumor-agnostic", also known as "tumor-naive" or "tumor-uninformed", using a fixed panel of known cancer driver mutations. The tumor-agnostic approach is chosen when mutation information from an individual's primary tumor tissue is not available. [3]
The tumor-informed approach is a form of personalized medicine. Typically tens or hundreds of mutations are chosen for MRD monitoring, and these tests can have a limit of detection of 0.001%, or one cell in 100,000. [3] The DNA sequences chosen in this approach may contribute to the genesis of the cancer, or may simply be linked to it (i.e. a mutation that is carried by cancer cells, but is not a driver of carcinogenesis).
The markers used for DNA-based testing can be single nucleotide polymorphisms or chromosomal translocations. In the case of leukemia, this may be t(14;18) involving BCL2 and t(11;14) involving BCL1 ( CCND1 ). Other methods for MRD detection include microsatellites, immunoglobulin and T cell receptors.
These are based on detecting a cancer-specific RNA sequence. Generally this is achieved through the use of reverse transcription of the RNA followed by polymerase chain reaction. RNA-based tests are normally utilized when a DNA test is impractical. For example, the t(9;22) BCR-ABL translocation may occur over a large length of the chromosome which makes DNA-based testing difficult and inefficient. However, RNA is a much less stable target for diagnostics than DNA and requires careful handling and processing.
The markers used for RNA-based testing are almost exclusively chromosomal translocations such as t(9;22) BCR-ABL, t(15;17) PML-RARA and t(12;21) ETV6-RUNX1 (TEL-AML1).
Patient-specific MRD detection using immunoglobulin (IG) or T-cell receptors (TCR) is gaining popularity as a way of measuring MRD in leukemias that do not contain a chromosomal translocation or other leukemic specific marker. In this case, the leukemic-specific IG or TCR clone is amplified using PCR and the variable region of the IG or TCR is sequenced. From this sequence, PCR primers are designed that will only amplify the specific leukemic clone from the patient.
Both the DNA- and RNA-based tests require that a pathologist examine the bone marrow to determine which leukaemic specific sequence to target. Once the target is determined, a sample of blood or bone marrow is obtained, nucleic acid is extracted, and the sample analyzed for the leukaemic sequence. These tests are very specific, and detect leukaemic cells at levels down to one cell in a million, though the limit typically achieved is one in 10,000 to one in 100,000 cells. For comparison, the limit of what one can detect using traditional morphologic examinations using a microscope is about one cell in 100.
Immunological-based testing of leukaemias utilizes proteins on the surface of the cells. White blood cells (WBC) can show a variety of proteins on the surface depending upon the type of WBC. Leukaemic cells often show quite unusual and unique combinations (leukemic phenotype) of these cell surface proteins. These proteins can be stained with fluorescent dye labeled antibodies and detected using flow cytometry. The limit of detection of immunological tests is generally about one in 10,000 cells and cannot be used on leukaemias that don't have an identifiable and stable leukaemic phenotype.
Targets: t(9;22) BCR-ABL, t(12;21) ETV6-RUNX1 (TEL-AML1), Patient specific assays for immunoglobulin and T cell receptor genes
Uses: Chromosomal translocation MRD detection is widely used as a standard clinical practice. Patient specific assays are gaining acceptance but are still generally only used in research protocols.
Targets: t(15;17) PML-RARA, t(8;21) AML1-RUNX1T1 (AML-ETO), inv(16), BCL2, FLT3, IDH1/2, NPM1. [8]
Uses: Chromosomal translocation MRD detection widely used as a standard clinical practice.
Targets: Cell surface proteins, patient-specific assays for immunoglobulin and T cell receptor genes
Uses: Immunological methods are gaining wider use as more advanced flow cytometers are utilized for clinical testing. Patient specific assays are still generally only used in research protocols.
Target: t(9;22) BCR-ABL
Uses: MRD detection of the t(9;22) is considered standard of care for all patients with CML and is extremely valuable for patients being treated with imatinib mesylate (Gleevec/Glivec).
Targets: t(14;18) IgH/BCL2, Patient specific assays for immunoglobulin and T cell receptor genes.
Uses: The t(14;18) is regularly used for MRD detection. Patient specific assays are still generally only used in research protocols.
Targets: t(11;14) IgH/CCND1 (IgH/BCL1), patient-specific assays for immunoglobulin and T cell receptor genes
Uses: The t(11;14) is regularly used for MRD detection, but the assay can only reliably detect 40–60% of the t(11;14) translocations. Patient-specific assays are still generally only used in research protocols.
Targets: M-protein levels in blood, patient-specific assays for immunoglobulin and T cell receptor genes (high levels of somatic hypermutation often prevent this assay from reliably working).
Uses: M-protein level in the blood is standard of care and is used for almost all patients with multiple myeloma. Patient-specific assays are still generally only used in research protocols.
Research into MRD detection of several solid tumors such as Breast, [1] [10] Colorectal, [2] [9] [11] Non-Small Cell Lung Cancer (NSCLC), [11] [12] Prostate, [10] Melanoma, [10] Bladder, [2] and Pancreatic cancer. [2]
New research uses Whole genome sequencing and Artificial Intelligence to find MRD across multiple solid tumors. [13]
Cancer could potentially be monitored similarly in non-human animals, however, no known evidence of such veterinary applications exists to date.
In some cases, the level of MRD at a certain time in treatment is a useful guide to the patient's prognosis. For instance, in childhood leukaemia, doctors traditionally take a bone marrow sample after five weeks, and assess the level of leukaemia in that. Even with a microscope, they were able to identify a few patients whose disease had not cleared, and those patients received different treatment. MRD tests also make use of this time, but the tests are much more sensitive.
When past patients were studied, patients with high levels at this stage – here "high" means often leukaemia more than 1 cell in 1000 – were at risk of relapse. Patients with levels below 1 in 100,000 were very unlikely to relapse. For those in between, some relapsed. This led to the idea that MRD testing could predict outcome, and this has now been shown. The next step is whether, having identified a patient whom standard treatment leaves at high risk, there are different treatments they could be offered, to lower that risk. Several clinical trials are investigating this.
Other research groups have looked at other times in treatment - e.g. 3 months, 6 months, one year, or end of current treatment (two years) and these can predict outcome also.
There are also a few scientific studies, showing that level of MRD after bone marrow transplant, shows the risk of relapsing.
Another possible use is to identify if or when someone starts to relapse, early, before symptoms come back. This would mean regular blood or marrow samples. This is being explored mainly in chronic myeloid leukaemia (CML), where one can study the leukaemia in blood, which is easier to sample regularly than bone marrow. The molecular tests can show tumour levels starting to rise, very early, possibly months before symptoms recur. Starting treatment early might be useful: the patient will be healthier; fewer leukaemic cells to deal with; the cells may be amenable to treatment, since at clinical relapse they have often become more resistant to drugs used.
This whole area comes under individualization of treatment, or if one prefers, identification of risk factors. Currently, most patient receive the same treatment, but leukaemia is a very variable disease, and different patients probably have widely different treatment needs, to eradicate the disease.
For instance, the initial five-week induction treatment might rapidly clear disease for some patients. For others, the same treatment might leave significant amounts of disease. Measuring MRD level helps doctors decide which patients need what. In other words, it identifies patients' individual risks of relapse, and can theoretically allow them to receive just enough treatment to prevent it.
Without MRD information, doctors can do nothing but give the same treatment to all patients. They know that this will be inadequate for some and excessive for others, but there is little else they can do, as it is not possible to tell who needs what. Identification of risk factors, to help individualise treatment, is a big field in medicine.
Generally the approach is to bring a cancer into remission first (absence of symptoms) and then try to eradicate the remaining cells (MRD). Often the treatments needed to eradicate MRD differ from those used initially. This is an area of much research.
It seems a sensible idea to aim to reduce or eradicate MRD. What is needed is evidence on which is the best method, and how well it works. This is emerging. Treatments which specifically target MRD can include:
It is important that doctors interpreting tests, base what they say on scientific evidence. If one visits hospital and gets tested for something - e.g. a blood count - most of the tests are used often, and have been done thousands or millions of times before, on many different people. The doctors reading the test results have a large body of evidence to interpret what the results mean. By contrast, MRD tests are new, and the diseases are uncommon. The tests have been done on relatively few people. Consequently, there is less evidence available to guide doctors in interpreting the tests, or basing treatment decisions on them. In plain English, this means the doctors are likely to be very cautious, and rely more on other tests which they know and trust, than these, at least at present, while evidence is accumulating.
There are controversies about the best times to test, and the best test method to use. There are national and international approaches to standardize these. In childhood leukaemia and chronic myeloid leukaemia, there appears to be consensus emerging.
There is also controversy about whether MRD is always bad, inevitably causing relapse, or whether sometimes low levels are 'safe' and do not regrow. It is usually assumed that cancer cells inevitably grow and that if they are present disease usually develops. But there is some evidence from animal studies, that leukaemic cells can lie dormant for years in the body and do not regrow. For this reason, it may be that the goal of treating MRD may be to reduce it to a "safe" level - not to eradicate it completely.
Some types of leukaemia are difficult to treat. In these, it is not clear how MRD testing would help. The patients may not do well on current treatment, but sometimes it is not clear what other treatment, if anything, might be better. There is thus an argument that as the test is not necessary: it might involve an additional procedure for the patient; it will contribute no useful information on treatment, it is not necessary.
Currently most MRD testing is done during clinical trials. The tests are specialised, so samples are usually sent to a central reference laboratory in each region or country. The tests are not done in most routine diagnostic labs, as they tend to be complex, and also would be used relatively infrequently.[ citation needed ]
MRD testing is technically demanding and time-consuming; the tests are expensive, so are usually available only through specialist centres, as part of clinical trials.[ citation needed ]
Unlike clinical tests which have been done millions of times and can be used to guide treatment, MRD tests are new and have been carried out on relatively few people (a few thousand at most). Researchers and doctors are still building the database of knowledge needed to show what MRD tests mean although this is likely to change in future as testing becomes more routine.[ citation needed ]
Leukemia is a group of blood cancers that usually begin in the bone marrow and result in high numbers of abnormal blood cells. These blood cells are not fully developed and are called blasts or leukemia cells. Symptoms may include bleeding and bruising, bone pain, fatigue, fever, and an increased risk of infections. These symptoms occur due to a lack of normal blood cells. Diagnosis is typically made by blood tests or bone marrow biopsy.
Chronic lymphocytic leukemia (CLL) is a type of cancer in which the bone marrow makes too many lymphocytes. Early on, there are typically no symptoms. Later, non-painful lymph node swelling, feeling tired, fever, night sweats, or weight loss for no clear reason may occur. Enlargement of the spleen and low red blood cells (anemia) may also occur. It typically worsens gradually over years.
The Philadelphia chromosome or Philadelphia translocation (Ph) is a specific genetic abnormality in chromosome 22 of leukemia cancer cells. This chromosome is defective and unusually short because of reciprocal translocation, t(9;22)(q34;q11), of genetic material between chromosome 9 and chromosome 22, and contains a fusion gene called BCR-ABL1. This gene is the ABL1 gene of chromosome 9 juxtaposed onto the breakpoint cluster region BCR gene of chromosome 22, coding for a hybrid protein: a tyrosine kinase signaling protein that is "always on", causing the cell to divide uncontrollably by interrupting the stability of the genome and impairing various signaling pathways governing the cell cycle.
Chronic myelogenous leukemia (CML), also known as chronic myeloid leukemia, is a cancer of the white blood cells. It is a form of leukemia characterized by the increased and unregulated growth of myeloid cells in the bone marrow and the accumulation of these cells in the blood. CML is a clonal bone marrow stem cell disorder in which a proliferation of mature granulocytes and their precursors is found; characteristic increase in basophils is clinically relevant. It is a type of myeloproliferative neoplasm associated with a characteristic chromosomal translocation called the Philadelphia chromosome.
Tumors of the hematopoietic and lymphoid tissues or tumours of the haematopoietic and lymphoid tissues are tumors that affect the blood, bone marrow, lymph, and lymphatic system. Because these tissues are all intimately connected through both the circulatory system and the immune system, a disease affecting one will often affect the others as well, making aplasia, myeloproliferation and lymphoproliferation closely related and often overlapping problems. While uncommon in solid tumors, chromosomal translocations are a common cause of these diseases. This commonly leads to a different approach in diagnosis and treatment of hematological malignancies. Hematological malignancies are malignant neoplasms ("cancer"), and they are generally treated by specialists in hematology and/or oncology. In some centers "hematology/oncology" is a single subspecialty of internal medicine while in others they are considered separate divisions. Not all hematological disorders are malignant ("cancerous"); these other blood conditions may also be managed by a hematologist.
Acute lymphoblastic leukemia (ALL) is a cancer of the lymphoid line of blood cells characterized by the development of large numbers of immature lymphocytes. Symptoms may include feeling tired, pale skin color, fever, easy bleeding or bruising, enlarged lymph nodes, or bone pain. As an acute leukemia, ALL progresses rapidly and is typically fatal within weeks or months if left untreated.
Hairy cell leukemia is an uncommon hematological malignancy characterized by an accumulation of abnormal B lymphocytes. It is usually classified as a subtype of chronic lymphocytic leukemia (CLL). Hairy cell leukemia makes up about 2% of all leukemias, with fewer than 2,000 new cases diagnosed annually in North America and Western Europe combined.
Hybridoma technology is a method for producing large numbers of identical antibodies, also called monoclonal antibodies. This process starts by injecting a mouse with an antigen that provokes an immune response. A type of white blood cell, the B cell, produces antibodies that bind to the injected antigen. These antibody producing B-cells are then harvested from the mouse and, in turn, fused with immortal myeloma cancer cells, to produce a hybrid cell line called a hybridoma, which has both the antibody-producing ability of the B-cell and the longevity and reproductivity of the myeloma.
Acute promyelocytic leukemia is a subtype of acute myeloid leukemia (AML), a cancer of the white blood cells. In APL, there is an abnormal accumulation of immature granulocytes called promyelocytes. The disease is characterized by a chromosomal translocation involving the retinoic acid receptor alpha (RARA) gene and is distinguished from other forms of AML by its responsiveness to all-trans retinoic acid therapy. Acute promyelocytic leukemia was first characterized in 1957 by French and Norwegian physicians as a hyperacute fatal illness, with a median survival time of less than a week. Today, prognoses have drastically improved; 10-year survival rates are estimated to be approximately 80-90% according to one study.
A myeloid sarcoma is a solid tumor composed of immature white blood cells called myeloblasts. A chloroma is an extramedullary manifestation of acute myeloid leukemia; in other words, it is a solid collection of leukemic cells occurring outside of the bone marrow.
Acute myeloid leukemia (AML) is a cancer of the myeloid line of blood cells, characterized by the rapid growth of abnormal cells that build up in the bone marrow and blood and interfere with normal blood cell production. Symptoms may include feeling tired, shortness of breath, easy bruising and bleeding, and increased risk of infection. Occasionally, spread may occur to the brain, skin, or gums. As an acute leukemia, AML progresses rapidly, and is typically fatal within weeks or months if left untreated.
Cluster of differentiation antigen 135 (CD135) also known as fms like tyrosine kinase 3, receptor-type tyrosine-protein kinase FLT3, or fetal liver kinase-2 (Flk2) is a protein that in humans is encoded by the FLT3 gene. FLT3 is a cytokine receptor which belongs to the receptor tyrosine kinase class III. CD135 is the receptor for the cytokine Flt3 ligand (FLT3L).
Juvenile myelomonocytic leukemia (JMML) is a rare form of chronic leukemia that affects children, commonly those aged four and younger. The name JMML now encompasses all diagnoses formerly referred to as juvenile chronic myeloid leukemia (JCML), chronic myelomonocytic leukemia of infancy, and infantile monosomy 7 syndrome. The average age of patients at diagnosis is two (2) years old. The World Health Organization has included JMML as a subcategory of myelodysplastic and myeloproliferative disorders.
B-cell prolymphocytic leukemia, referred to as B-PLL, is a rare blood cancer. It is a more aggressive, but still treatable, form of leukemia.
Acute megakaryoblastic leukemia (AMKL) is life-threatening leukemia in which malignant megakaryoblasts proliferate abnormally and injure various tissues. Megakaryoblasts are the most immature precursor cells in a platelet-forming lineage; they mature to promegakaryocytes and, ultimately, megakaryocytes which cells shed membrane-enclosed particles, i.e. platelets, into the circulation. Platelets are critical for the normal clotting of blood. While malignant megakaryoblasts usually are the predominant proliferating and tissue-damaging cells, their similarly malignant descendants, promegakaryocytes and megakaryocytes, are variable contributors to the malignancy.
Blastic plasmacytoid dendritic cell neoplasm (BPDCN) is a rare hematologic malignancy. It was initially regarded as a form of lymphocyte-derived cutaneous lymphoma and alternatively named CD4+CD56+ hematodermic tumor, blastic NK cell lymphoma, and agranular CD4+ NK cell leukemia. Later, however, the disease was determined to be a malignancy of plasmacytoid dendritic cells rather than lymphocytes and therefore termed blastic plasmacytoid dendritic cell neoplasm. In 2016, the World Health Organization designated BPDCN to be in its own separate category within the myeloid class of neoplasms. It is estimated that BPDCN constitutes 0.44% of all hematological malignancies.
Virtual karyotype is the digital information reflecting a karyotype, resulting from the analysis of short sequences of DNA from specific loci all over the genome, which are isolated and enumerated. It detects genomic copy number variations at a higher resolution for level than conventional karyotyping or chromosome-based comparative genomic hybridization (CGH). The main methods used for creating virtual karyotypes are array-comparative genomic hybridization and SNP arrays.
CAPP-Seq is a next-generation sequencing based method used to quantify circulating DNA in cancer (ctDNA). The method was introduced in 2014 by Ash Alizadeh and Maximilian Diehn’s laboratories at Stanford, as a tool for measuring Cell-free tumor DNA which is released from dead tumor cells into the blood and thus may reflect the entire tumor genome. This method can be generalized for any cancer type that is known to have recurrent mutations. CAPP-Seq can detect one molecule of mutant DNA in 10,000 molecules of healthy DNA. The original method was further refined in 2016 for ultra sensitive detection through integration of multiple error suppression strategies, termed integrated Digital Error Suppression (iDES). The use of ctDNA in this technique should not be confused with circulating tumor cells (CTCs); these are two different entities.
T-cell acute lymphoblastic leukemia (T-ALL) is a type of acute lymphoblastic leukemia with aggressive malignant neoplasm of the bone marrow. Acute lymphoblastic leukemia (ALL) is a condition where immature white blood cells accumulate in the bone marrow, subsequently crowding out normal white blood cells and create build-up in the liver, spleen, and lymph nodes. The two most common types of ALL are B-lymphocytes and T-lymphocytes, where the first protects the body against viruses and bacteria through antibody production which can directly destroy target cells or trigger others to do so, whilst the latter directly destroy bacteria or cells infected with viruses. Approximately 20% of all ALL patients are categorized specifically to suffer from T-ALL and it is seen to be more prevalent in the adult population in comparison to children, with incidences shown to diminish with age. Amongst T-ALL cases in the pediatric population, a median onset of age 9 has been identified and the disease is particularly prominent amongst adolescents. The disease stems from cytogenic and molecular abnormalities, resulting in disruption of developmental pathways controlling thymocyte development, tumor suppressor development, and alterations in control of cell growth and proliferation. Distinct from adult T-cell leukemia where T-cell lymphotropic virus Type I causes malignant maturation of T-cells, T-ALL is a precursor for lymphoid neoplasm. Its clinical presentation most commonly includes infiltration of the central nervous system (CNS), and further identifies mediastinal mass presence originating from the thymus, along with extramedullary involvement of multiple organs including the lymph node as a result of hyperleukocytosis.
Christopher Hourigan is a physician-scientist known for work on measurable residual disease in acute myeloid leukemia.