Monocular vision

Last updated

Monocular vision is vision using only one eye. It is seen in two distinct categories: either a species moves its eyes independently, or a species typically uses two eyes for vision, but is unable to use one due to circumstances such as injury. [1]

Contents

Monocular vision can occur in both humans and animals (such as hammerhead sharks). Humans can benefit from several monocular cues when using only one eye, such as motion parallax and perspective. There are also some mythological creatures with only one eye, such as the cyclops.

In human species

Monocular vision vision is known as seeing and using only one eye in the human species. Depth perception in monocular vision is reduced compared to binocular vision, but still is active primarily due to accommodation of the eye and motion parallax. The word monocular comes from the Greek root, mono for single, and the Latin root, oculus for eye.

Bimonocular vision also named two-eyed monocular vision is known as seeing and using both eyes in a monocular way independently of each other without fusion over the entire field of view without visual field loss in the human species[ citation needed ] and was discovered in 2018.[ citation needed ] The word monocular comes from the Greek root, mono for single, and the Latin root, oculus for eye.[ citation needed ]

In animals

The eyes of an animal with monocular vision are positioned on opposite sides of the animal's head, giving it the ability to see two objects at once. This is usually most commonly seen with prey animals, as the reason why their eyes are placed on either side of their head is to make it easier for them to look out for predators, which usually have forward-facing eyes to make it easier to find prey. However, there are some exceptions to this rule, usually if the predator is an animal that is often preyed upon by a greater predator (because of this, apex predators usually tend to have forward-facing eyes) or sport an anatomy that makes it very difficult for it to see straight, such as a short, stiff neck that would limit its head movement, and therefore would require its eyes to be on either side (this is often seen with marine predators such as sharks and killer whales).

Notably, hammerhead sharks have some binocular vision as well as some amount of monocular vision.

Monocular vision impairment refers to having no vision in one eye with adequate vision in the other. [2]

Monopsia is a medical condition in humans who cannot perceive depth even though their two eyes are medically normal, healthy, and spaced apart in a normal way. Vision that perceives three-dimensional depth requires more than parallax. In addition, the resolution of the two disparate images, though highly similar, must be simultaneous, subconscious, and complete. (After-images and "phantom" images are symptoms of incomplete visual resolution, even though the eyes themselves exhibit remarkable acuity.) A feature article in The New Yorker magazine published in early 2006 dealt with one individual in particular, who, learning to cope with her disability, eventually learned how to see three-dimensional depth in her daily life. Medical tests are available for determining monoptic conditions in humans. [3]

Monocular cues

Monocular cues provide depth information when viewing a scene with one eye.

Recent advances in computational machine learning now allow monocular depth for an entire scene to be algorithmically estimated from a single digital image by implicitly using one or more of these cues. [6] [7]

Balance

Vision has been known to play an important role in balance and postural control in humans, along with proprioception and vestibular function. Monocular vision affects how the brain perceives its surroundings by decreasing the available visual field, impairing peripheral vision on one side of the body, and compromising depth perception, all three of which are major contributors to the role of vision in balance. [8] [9] Studies comparing monocular vision to binocular (two eyes) vision in cataract patients (pre and post surgery), [10] glaucoma patients (compared with healthy age matched controls), [11] and in healthy adults and children (in both binocular and monocular conditions) [8] have all shown to negatively impact balance and postural control than when both eyes are available. Each of the studied populations still displayed better balance when having only one eye compared to having both eyes closed.

There are many examples of mythological creatures that have one eye, and thereby monocular vision.

A popular mythical beast with monocular vision is a cyclops.

Related Research Articles

<span class="mw-page-title-main">Parallax</span> Difference in the apparent position of an object viewed along two different lines of sight

Parallax is a displacement or difference in the apparent position of an object viewed along two different lines of sight and is measured by the angle or half-angle of inclination between those two lines. Due to foreshortening, nearby objects show a larger parallax than farther objects, so parallax can be used to determine distances.

<span class="mw-page-title-main">Forced perspective</span> Optical illusion

Forced perspective is a technique that employs optical illusion to make an object appear farther away, closer, larger or smaller than it actually is. It manipulates human visual perception through the use of scaled objects and the correlation between them and the vantage point of the spectator or camera. It has uses in photography, filmmaking and architecture.

<span class="mw-page-title-main">Binocular vision</span> Type of vision with two eyes facing the same direction

In biology, binocular vision is a type of vision in which an animal has two eyes capable of facing the same direction to perceive a single three-dimensional image of its surroundings. Binocular vision does not typically refer to vision where an animal has eyes on opposite sides of its head and shares no field of view between them, like in some animals.

<span class="mw-page-title-main">Stereoscopy</span> Technique for creating or enhancing the illusion of depth in an image

Stereoscopy is a technique for creating or enhancing the illusion of depth in an image by means of stereopsis for binocular vision. The word stereoscopy derives from Greek στερεός (stereos) 'firm, solid', and σκοπέω (skopeō) 'to look, to see'. Any stereoscopic image is called a stereogram. Originally, stereogram referred to a pair of stereo images which could be viewed using a stereoscope.

<span class="mw-page-title-main">Depth perception</span> Visual ability to perceive the world in 3D

Depth perception is the ability to perceive distance to objects in the world using the visual system and visual perception. It is a major factor in perceiving the world in three dimensions. Depth perception happens primarily due to stereopsis and accommodation of the eye.

<span class="mw-page-title-main">Visual system</span> Body parts responsible for vision

The visual system is the physiological basis of visual perception. The system detects, transduces and interprets information concerning light within the visible range to construct an image and build a mental model of the surrounding environment. The visual system is associated with the eye and functionally divided into the optical system and the neural system.

<span class="mw-page-title-main">Autostereogram</span> Visual illusion of 3D scene achieved by unfocusing eyes when viewing specific 2D images

An autostereogram is a two-dimensional (2D) image that can create the optical illusion of a three-dimensional (3D) scene. Autostereograms use only one image to accomplish the effect while normal stereograms require two. The 3D scene in an autostereogram is often unrecognizable until it is viewed properly, unlike typical stereograms. Viewing any kind of stereogram properly may cause the viewer to experience vergence-accommodation conflict.

Random-dot stereogram (RDS) is stereo pair of images of random dots which, when viewed with the aid of a stereoscope, or with the eyes focused on a point in front of or behind the images, produces a sensation of depth, with objects appearing to be in front of or behind the display level.

Stereopsis is the component of depth perception retrieved through binocular vision. Stereopsis is not the only contributor to depth perception, but it is a major one. Binocular vision happens because each eye receives a different image because they are in slightly different positions in one's head. These positional differences are referred to as "horizontal disparities" or, more generally, "binocular disparities". Disparities are processed in the visual cortex of the brain to yield depth perception. While binocular disparities are naturally present when viewing a real three-dimensional scene with two eyes, they can also be simulated by artificially presenting two different images separately to each eye using a method called stereoscopy. The perception of depth in such cases is also referred to as "stereoscopic depth".

<span class="mw-page-title-main">Hollow-Face illusion</span> Optical illusion

The Hollow-Face illusion is an optical illusion in which the perception of a concave mask of a face appears as a normal convex face.

<span class="mw-page-title-main">Infant visual development</span>

Infant vision concerns the development of visual ability in human infants from birth through the first years of life. The aspects of human vision which develop following birth include visual acuity, tracking, color perception, depth perception, and object recognition.

A sensory cue is a statistic or signal that can be extracted from the sensory input by a perceiver, that indicates the state of some property of the world that the perceiver is interested in perceiving.

Binocular disparity refers to the difference in image location of an object seen by the left and right eyes, resulting from the eyes’ horizontal separation (parallax). The brain uses binocular disparity to extract depth information from the two-dimensional retinal images in stereopsis. In computer vision, binocular disparity refers to the difference in coordinates of similar features within two stereo images.

<span class="mw-page-title-main">Equine vision</span>

The equine eye is one of the largest of any land mammal. Its visual abilities are directly related to the animal's behavior; for example, it is active during both day and night, and it is a prey animal. Both the strengths and weaknesses of the horse's visual abilities should be taken into consideration when training the animal, as an understanding of the horse's eye can help to discover why the animal behaves the way it does in various situations.

<span class="mw-page-title-main">Vision in toads</span>

The neural basis of prey detection, recognition, and orientation was studied in depth by Jörg-Peter Ewert in a series of experiments that made the toad visual system a model system in neuroethology. He began by observing the natural prey catching behavior of the common European toad.

<span class="mw-page-title-main">Chromostereopsis</span> Visual illusion whereby the impression of depth is conveyed in two-dimensional color images

Chromostereopsis is a visual illusion whereby the impression of depth is conveyed in two-dimensional color images, usually of red–blue or red–green colors, but can also be perceived with red–grey or blue–grey images. Such illusions have been reported for over a century and have generally been attributed to some form of chromatic aberration.

<span class="mw-page-title-main">Wiggle stereoscopy</span> 3-D image display method

Wiggle stereoscopy is an example of stereoscopy in which left and right images of a stereogram are animated. This technique is also called wiggle 3-D, wobble 3-D, wigglegram, or sometimes Piku-Piku.

<span class="mw-page-title-main">Chameleon vision</span> Visual sense in the family of reptiles

The chameleon is among the most highly visually-oriented lizards, using this sense in prey capture, mating behavior, and predator avoidance. Unique features of chameleon vision include a negative lens, a positive cornea, and monocular focusing. The development of the chameleon visual system could have evolved to aid in prey capture and/or in predator avoidance.

Binocular neurons are neurons in the visual system that assist in the creation of stereopsis from binocular disparity. They have been found in the primary visual cortex where the initial stage of binocular convergence begins. Binocular neurons receive inputs from both the right and left eyes and integrate the signals together to create a perception of depth.

Stereoscopic motion, as introduced by Béla Julesz in his book Foundations of Cyclopean Perception of 1971, is a translational motion of figure boundaries defined by changes in binocular disparity over time in a real-life 3D scene, a 3D film or other stereoscopic scene. This translational motion gives rise to a mental representation of three dimensional motion created in the brain on the basis of the binocular motion stimuli. Whereas the motion stimuli as presented to the eyes have a different direction for each eye, the stereoscopic motion is perceived as yet another direction on the basis of the views of both eyes taken together. Stereoscopic motion, as it is perceived by the brain, is also referred to as cyclopean motion, and the processing of visual input that takes place in the visual system relating to stereoscopic motion is called stereoscopic motion processing.

References

  1. "Monocular vision". Biology Articles, Tutorials & Dictionary Online. 2019-10-07. Retrieved 2023-09-22.
  2. "Monocular Vision Impairment (MVI)". www.guidedogsqld.com.au. Archived from the original on December 8, 2006.
  3. Monocular individuals face increased challenges with driving. These specifically relate to depth perception and peripheral vision. Keeney, et al.,[ full citation needed ] state, "nationwide, monocularly impaired individuals have seven times more accidents than the general population with which they were compared." He recommends monocularly impaired drivers be denied class 1 licenses, (commercial driver license for transport of people), and that they be warned by their doctors regarding increased risk of accident with driving
  4. Ferris, S. H. (1972). Motion parallax and absolute distance. Journal of experimental psychology, 95(2), 258--63.
  5. O’Shea, R. P., Blackburn, S. G., & Ono, H. (1994). Contrast as a depth cue [ dead link ]. Vision Research, 34, 1595-1604.
  6. Godard, C., Mac Aodha, O., Brostow, G.J. (2017). "Unsupervised monocular depth estimation with left-right consistency" (PDF). Proc. Computer Vision and Pattern Recognition. Vol. 2. p. 7.{{cite book}}: CS1 maint: multiple names: authors list (link)
  7. Atapour-Abarghouei, A., Breckon, T.P. (2018). "Real-Time Monocular Depth Estimation using Synthetic Data with Domain Adaptation" (PDF). Proc. Computer Vision and Pattern Recognition. IEEE. pp. 1–8. Retrieved 9 August 2018.{{cite book}}: CS1 maint: multiple names: authors list (link)
  8. 1 2 Berela, J. et al. (2011) Use of monocular and binocular visual cues for postural control in children. Journal of Vision. 11(12):10, 1-8
  9. Wade, M. and Jones, G. (1997) The role of vision and spatial orientation in the maintenance of posture. Physical Therapy. 77, 619-628
  10. Schwartz, S. et al. (2005) The effect of cataract surgery on postural control. Investigative Ophthalmology and Visual Science. 46(3), 920-924
  11. Shabana, N, et al. (2005) Postural Stability in primary open angle glaucoma. Clinical and Experimental Ophthalmology. 33, 264-273