Developer(s) | LANL |
---|---|
Stable release | MCNP6.3 / January 10, 2023 [1] |
Written in | Fortran 90 |
Operating system | Cross-platform |
Type | Computational physics |
License | https://rsicc.ornl.gov/ |
Website | mcnp |
Monte Carlo N-Particle Transport (MCNP) [2] is a general-purpose, continuous-energy, generalized-geometry, time-dependent, Monte Carlo radiation transport code designed to track many particle types over broad ranges of energies and is developed by Los Alamos National Laboratory. Specific areas of application include, but are not limited to, radiation protection and dosimetry, radiation shielding, radiography, medical physics, nuclear criticality safety, detector design and analysis, nuclear oil well logging, accelerator target design, fission and fusion reactor design, decontamination and decommissioning. The code treats an arbitrary three-dimensional configuration of materials in geometric cells bounded by first- and second-degree surfaces and fourth-degree elliptical tori.
Point-wise cross section data are typically used, although group-wise data also are available. For neutrons, all reactions given in a particular cross-section evaluation (such as ENDF/B-VI) are accounted for. Thermal neutrons are described by both the free gas and S(α,β) models. For photons, the code accounts for incoherent and coherent scattering, the possibility of fluorescent emission after photoelectric absorption, absorption in pair production with local emission of annihilation radiation, and bremsstrahlung. A continuous-slowing-down model is used for electron transport that includes positrons, k x-rays, and bremsstrahlung but does not include external or self-induced fields.
Important standard features that make MCNP very versatile and easy to use include a powerful general source, criticality source, and surface source; both geometry and output tally plotters; a rich collection of variance reduction techniques; a flexible tally structure; and an extensive collection of cross-section data.
MCNP contains numerous flexible tallies: surface current and flux, volume flux (track length), point or ring detectors, particle heating, fission heating, pulse height tally for energy or charge deposition, mesh tallies, and radiography tallies.
The key value MCNP provides is a predictive capability that can replace expensive or impossible-to-perform experiments. It is often used to design large-scale measurements providing a significant time and cost savings to the community. LANL's latest version of the MCNP code, version 6.2, represents one piece of a set of synergistic capabilities each developed at LANL; it includes evaluated nuclear data (ENDF) and the data processing code, NJOY. The international user community's high confidence in MCNP's predictive capabilities are based on its performance with verification and validation test suites, comparisons to its predecessor codes, automated testing, underlying high quality nuclear and atomic databases and significant testing by its users.
The Monte Carlo method for radiation particle transport has its origins at LANL dates back to 1946. [3] The creators of these methods were Stanislaw Ulam, John von Neumann, Robert Richtmyer, and Nicholas Metropolis. [4] Monte Carlo for radiation transport was conceived by Stanislaw Ulam in 1946 while playing Solitaire while recovering from an illness. "After spending a lot of time trying to estimate success by combinatorial calculations, I wondered whether a more practical method...might be to lay it out say one hundred times and simply observe and count the number of successful plays." In 1947, John von Neumann sent a letter to Robert Richtmyer proposing the use of a statistical method to solve neutron diffusion and multiplication problems in fission devices. [5] His letter contained an 81-step pseudo code and was the first formulation of a Monte Carlo computation for an electronic computing machine. Von Neumann's assumptions were: time-dependent, continuous-energy, spherical but radially-varying, one fissionable material, isotropic scattering and fission production, and fission multiplicities of 2, 3, or 4. He suggested 100 neutrons each to be run for 100 collisions and estimated the computational time to be five hours on ENIAC [6] [ circular reference ]. Richtmyer proposed suggestions to allow for multiple fissionable materials, no fission spectrum energy dependence, single neutron multiplicity, and running the computation for computer time and not for the number of collisions. The code was finalized in December 1947. The first calculations were run in April/May 1948 on ENIAC.
While waiting for ENIAC to be physically relocated, Enrico Fermi invented a mechanical device called FERMIAC [7] to trace neutron movements through fissionable materials by the Monte Carlo method. Monte Carlo methods for particle transport have been driving computational developments since the beginning of modern computers; this continues today.
In the 1950s and 1960s, these new methods were organized into a series of special-purpose Monte Carlo codes, including MCS, MCN, MCP, and MCG. These codes were able to transport neutrons and photons for specialized LANL applications. In 1977, these separate codes were combined to create the first generalized Monte Carlo radiation particle transport code, MCNP. [8] [9] In 1977, MCNP was first created by merging MCNG with MCP to create MCNP. The first release of the MCNP code was version 3 and was released in 1983. It is distributed by the Radiation Safety Information Computational Center in Oak Ridge, TN.
Monte Carlo N-Particle eXtended (MCNPX) was also developed at Los Alamos National Laboratory, and is capable of simulating particle interactions of 34 different types of particles (nucleons and ions) and 2000+ heavy ions at nearly all energies, [10] including those simulated by MCNP.
Both codes can be used to judge whether or not nuclear systems are critical and to determine doses from sources, among other things.
MCNP6 is a merger of MCNP5 and MCNPX. [10]
MCNP6 is less accurate than MCNPX. [11] [12] Geant4 is less accurate than MCNPX. [11] [12] [13] [14] [15] Geant4 is less accurate than MCNP5. [12] [16]
The neutron is a subatomic particle, symbol
n
or
n0
, that has no electric charge, and a mass slightly greater than that of a proton. Protons and neutrons constitute the nuclei of atoms. Since protons and neutrons behave similarly within the nucleus, they are both referred to as nucleons. Nucleons have a mass of approximately one atomic mass unit, or dalton. Their properties and interactions are described by nuclear physics. Protons and neutrons are not elementary particles; each is composed of three quarks.
Stanisław Marcin Ulam was a Polish mathematician, nuclear physicist and computer scientist. He participated in the Manhattan Project, originated the Teller–Ulam design of thermonuclear weapons, discovered the concept of the cellular automaton, invented the Monte Carlo method of computation, and suggested nuclear pulse propulsion. In pure and applied mathematics, he proved a number of theorems and proposed several conjectures.
Monte Carlo methods, or Monte Carlo experiments, are a broad class of computational algorithms that rely on repeated random sampling to obtain numerical results. The underlying concept is to use randomness to solve problems that might be deterministic in principle. The name comes from the Monte Carlo Casino in Monaco, where the primary developer of the method, mathematician Stanisław Ulam, was inspired by his uncle's gambling habits.
Nuclear technology is technology that involves the nuclear reactions of atomic nuclei. Among the notable nuclear technologies are nuclear reactors, nuclear medicine and nuclear weapons. It is also used, among other things, in smoke detectors and gun sights.
In nuclear engineering, fissile material is material that can undergo nuclear fission when struck by a neutron of low energy. A self-sustaining thermal chain reaction can only be achieved with fissile material. The predominant neutron energy in a system may be typified by either slow neutrons or fast neutrons. Fissile material can be used to fuel thermal-neutron reactors, fast-neutron reactors and nuclear explosives.
In nuclear engineering, a critical mass is the smallest amount of fissile material needed for a sustained nuclear chain reaction. The critical mass of a fissionable material depends upon its nuclear properties, density, shape, enrichment, purity, temperature, and surroundings. The concept is important in nuclear weapon design.
Nicholas Constantine Metropolis was a Greek-American physicist.
Geant4 is a platform for "the simulation of the passage of particles through matter" using Monte Carlo methods. It is the successor of the GEANT series of software toolkits developed by The Geant4 Collaboration, and the first to use object oriented programming. Its development, maintenance and user support are taken care by the international Geant4 Collaboration. Application areas include high energy physics and nuclear experiments, accelerator and space physics studies. The software is used by a number of research projects around the world.
The fission-fragment rocket is a rocket engine design that directly harnesses hot nuclear fission products for thrust, as opposed to using a separate fluid as working mass. The design can, in theory, produce very high specific impulse while still being well within the abilities of current technologies.
Neutron transport is the study of the motions and interactions of neutrons with materials. Nuclear scientists and engineers often need to know where neutrons are in an apparatus, in what direction they are going, and how quickly they are moving. It is commonly used to determine the behavior of nuclear reactor cores and experimental or industrial neutron beams. Neutron transport is a type of radiative transport.
A thermonuclear weapon, fusion weapon or hydrogen bomb (H bomb) is a second-generation nuclear weapon design. Its greater sophistication affords it vastly greater destructive power than first-generation nuclear bombs, a more compact size, a lower mass, or a combination of these benefits. Characteristics of nuclear fusion reactions make possible the use of non-fissile depleted uranium as the weapon's main fuel, thus allowing more efficient use of scarce fissile material such as uranium-235 or plutonium-239. The first full-scale thermonuclear test was carried out by the United States in 1952, and the concept has since been employed by most of the world's nuclear powers in the design of their weapons.
Naturally occurring zirconium (40Zr) is composed of four stable isotopes (of which one may in the future be found radioactive), and one very long-lived radioisotope (96Zr), a primordial nuclide that decays via double beta decay with an observed half-life of 2.0×1019 years; it can also undergo single beta decay, which is not yet observed, but the theoretically predicted value of t1/2 is 2.4×1020 years. The second most stable radioisotope is 93Zr, which has a half-life of 1.53 million years. Thirty other radioisotopes have been observed. All have half-lives less than a day except for 95Zr (64.02 days), 88Zr (83.4 days), and 89Zr (78.41 hours). The primary decay mode is electron capture for isotopes lighter than 92Zr, and the primary mode for heavier isotopes is beta decay.
Neutron detection is the effective detection of neutrons entering a well-positioned detector. There are two key aspects to effective neutron detection: hardware and software. Detection hardware refers to the kind of neutron detector used and to the electronics used in the detection setup. Further, the hardware setup also defines key experimental parameters, such as source-detector distance, solid angle and detector shielding. Detection software consists of analysis tools that perform tasks such as graphical analysis to measure the number and energies of neutrons striking the detector.
The EGS computer code system is a general purpose package for the Monte Carlo simulation of the coupled transport of electrons and photons in an arbitrary geometry for particles with energies from a few keV up to several hundreds of GeV. It originated at SLAC but National Research Council of Canada and KEK have been involved in its development since the early 80s.
The Monte Carlo trolley, or FERMIAC, was an analog computer invented by physicist Enrico Fermi to aid in his studies of neutron transport.
FLUKA is a fully integrated Monte Carlo simulation package for the interaction and transport of particles and nuclei in matter. FLUKA has many applications in particle physics, high energy experimental physics and engineering, shielding, detector and telescope design, cosmic ray studies, dosimetry, medical physics, radiobiology. A recent line of development concerns hadron therapy.
FASTRAD is a tool dedicated to the calculation of radiation effects on electronics. The software has uses in high energy physics and nuclear experiments, medical areas, and accelerator and space physics studies, though it is primarily used in the design of satellites.
The following timeline starts with the invention of the modern computer in the late interwar period.
This is a timeline of key developments in computational mathematics.
Shyam Sunder Kapoor is an Indian nuclear physicist and a former director of Bhabha Atomic Research Centre. Known for his research on fission and heavy-ion physics, Kapoor is an elected fellow of all the three major Indian science academies – Indian Academy of Sciences, Indian National Science Academy and National Academy of Sciences, India – as well as the Institute of Physics. The Council of Scientific and Industrial Research, the apex agency of the Government of India for scientific research, awarded him the Shanti Swarup Bhatnagar Prize for Science and Technology, one of the highest Indian science awards, for his contributions to Physical Sciences in 1983.