RELAP5-3D

Last updated
RELAP5-3D
Developer(s) Idaho National Laboratory
Initial releaseJuly 6, 1997
Stable release
RELAP5-3D/Ver: 4.4.2 [1]
(5 years, 8 months and 7 days ago)
Operating system Linux, Windows
Available in Fortran 95
Type Advanced Computational Engine
License Proprietary
Website relap53d.inl.gov/SitePages/Home.aspx

RELAP5-3D is a simulation tool that allows users to model the coupled behavior of the reactor coolant system and the core for various operational transients and postulated accidents that might occur in a nuclear reactor. RELAP5-3D (Reactor Excursion and Leak Analysis Program) can be used for reactor safety analysis, reactor design, simulator training of operators, and as an educational tool by universities. RELAP5-3D was developed at Idaho National Laboratory to address the pressing need for reactor safety analysis and continues to be developed through the United States Department of Energy and the International RELAP5 Users Group (IRUG) with over $3 million invested annually. The code is distributed through INL's Technology Deployment Office and is licensed to numerous universities, governments, and corporations worldwide. [2] [3]

Contents

Background

RELAP5-3D is an outgrowth of the one-dimensional RELAP5/MOD3 code developed at Idaho National Laboratory (INL) for the U.S. Nuclear Regulatory Commission (NRC). The U.S. Department of Energy (DOE) began sponsoring additional RELAP5 development in the early 1980s to meet its own reactor safety assessment needs. Following the Chernobyl disaster, DOE undertook a re-assessment of the safety of all its test and production reactors throughout the United States. The RELAP5 code was chosen as the thermal-hydraulic analysis tool because of its widespread acceptance.

The application of RELAP5 to various reactor designs created the need for new modeling capabilities. In particular, the analysis of the Savannah River reactors necessitated a three-dimensional flow model. Later, under laboratory-discretionary funding, multi-dimensional reactor kinetics were added.

Up until the end of 1995, INL maintained NRC and DOE versions of the code in a single source code that could be partitioned before compilation. It became clear by then, however, that the efficiencies realized by the maintenance of a single source were being overcome by the extra effort required to accommodate sometimes conflicting requirements. The code was therefore "split" into two versions—one for NRC and the other for DOE. The DOE version maintained all of the capabilities and validation history of the predecessor code, plus the added capabilities that had been sponsored by the DOE before and after the split.

The most prominent attribute that distinguishes the DOE code from the NRC code is the fully integrated, multi-dimensional thermal-hydraulic and kinetic modeling capability in the DOE code. [4] [5] [6] [7] [8] [9] This removes any restrictions on the applicability of the code to the full range of postulated reactor accidents. Other enhancements include a new matrix solver, additional water properties, and improved time advancement for greater robustness. [5]

Features

Modeling Capability

Screen capture of a three-dimensionally rotatable RELAP5-3D model of the Westinghouse Zion Nuclear Power Station showing the void fraction (mixture of liquid and gaseous water by volume) as a number between 0 and 1. Violet portions represent 100% water, while red portions indicate 100% steam. Other shades indicate the composition of the two-phase mixture. Users can overlay text on the image and add auxiliary widgets (such as plots and updating tables) to the desktop. RELAP Desktop View.jpg
Screen capture of a three-dimensionally rotatable RELAP5-3D model of the Westinghouse Zion Nuclear Power Station showing the void fraction (mixture of liquid and gaseous water by volume) as a number between 0 and 1. Violet portions represent 100% water, while red portions indicate 100% steam. Other shades indicate the composition of the two-phase mixture. Users can overlay text on the image and add auxiliary widgets (such as plots and updating tables) to the desktop.

RELAP5-3D has multidimensional thermal hydraulics and neutron kinetic modeling capabilities. The multidimensional component in RELAP5-3D was developed to allow the user to accurately model the multidimensional flow behavior that can be exhibited in any component or region of a nuclear reactor coolant system. There is also two dimensional conductive and radiative heat transfer capability and modeling of plant trips and control systems. [10] RELAP5-3D allows for the simulation of the full range of reactor transients and postulated accidents, including:

Hydrodynamic Model

RELAP5-3D is a transient, two-fluid model for flow of a two-phase vapor/gas-liquid mixture that can contain non-condensable components in the vapor/gas phase and/or a soluble component in the liquid phase. The multi-dimensional component in RELAP5-3D was developed to allow the user to more accurately model the multi-dimensional flow behavior that can be exhibited in any component or region of an LWR system. Typically, this will be the lower plenum, core, upper plenum and downcomer regions of an LWR. However, the model is general, and is not restricted to use in the reactor vessel. The component defines a one, two, or three-dimensional array of volumes and the internal junctions connecting them. The geometry can be either Cartesian (x, y, z) or cylindrical (r, q, z). An orthogonal, three-dimensional grid is defined by mesh interval input data in each of the three coordinate directions. [11]

The functionality of the multi-dimensional component has been under testing and refinement since it was first applied to study the K reactor at Savannah River in the early 1990s. A set of ten verification test cases with closed form solutions are used to demonstrate the correctness of the numerical formulation for the conservation equations. [3]

Recent developments have updated the programming language to FORTRAN 95 and incorporated viscous effects in multi-dimensional hydrodynamic models. Currently, RELAP5-3D contains 27 different working fluids including:

Working fluids allow single-phase, two-phase, and supercritical applications.

Thermal Model

Heat structures provided in RELAP5-3D permit calculation of heat transferred across solid boundaries of hydrodynamic volumes. Modeling capabilities of heat structures are general and include fuel pins or plates with nuclear or electrical heating, heat transfer across steam generator tubes, and heat transfer from pipe and vessel walls. Temperature-dependent and space-dependent thermal conductivities and volumetric heat capacities are provided in tabular or functional form either from built-in or user-supplied data. There is also a radiative/conductive enclosure model, for which the user may supply/view conductance factors. [13]

Control System

RELAP5-3D allows the user to model a control system typically used in hydrodynamic systems, including other phenomena described by algebraic and ordinary differential equations. Each control system component defines a variable as a specific function of time-advanced quantities; this permits control variables to be developed from components that perform simple, basic operations.

Reactor Kinetics

There are two options that include a point reactor kinetics model and a multidimensional neutron kinetics model. A flexible neutron cross section model and a control rod model have been implemented to allow for the complete modeling of the reactor core. The decay heat model developed as part of the point reactor kinetics model has been modified to compute decay power for point reactor kinetics and multi-dimensional neutron kinetics models. [14]

Recent Major Upgrades

Accurate Verification Capability

Verification ensures the program is built right by: (1) showing it meets its design specifications, (2) comparing its calculations against analytical solutions and method of manufactured solutions. RELAP5-3D Sequential Verification writes a file of extremely accurate representations of primary variables for comparing calculations between code versions to reveal any changes. The test suite of input models exercise code capabilities important for modeling nuclear plants. This verification capability also provides means to test that important code functions such as restart and backup work properly.

Moving System Modeling Capability

The ability to simulate movement, such as could be encountered in ships, airplanes, or a terrestrial reactor during an earthquake becomes available in the 2013 release of RELAP5-3D. This capability allows the user to simulate motion through input, including translational displacement and rotation about the origin implied by the position of the reference volume. The transient rotation can be input using either Euler or pitch-yaw-roll angles. The movement is simulated using a combination of sine functions and tables of rotational angles and translational displacement. Since the gravitational constant is also an input quantity, this capability is not limited to the surface of the Earth. It allows RELAP5-3D to model reactor systems on space craft, a space station, the moon, or other extraterrestrial bodies.

International RELAP5 Users Group

There are five different levels of membership available in the International RELAP5 Users Group (IRUG). Each has a different level of benefits, services, and membership fee. [15]

Members

A full member organization is the highest level of participation possible in the IRUG. Members receive the RELAP5-3D software in source code form. Multiple copy use is allowed. Two levels of membership are available: Regular and "Super User". Regular Member organizations receive up to 40 hours of on-call assistance in areas such as model noding, code usage recommendations, debugging, and interpretations of results from INL RELAP5 technical experts. Super Users receive up to 100 hours of staff assistance. [16]

Multi-Use Participants

Multi-use participants are organizations that require use of the code but do not need or desire all the benefits of a full member. Participants receive the RELAP5-3D software in executable form only. Multiple copy use is allowed. Participants receive up to 20 hours of staff assistance. [16]

Single-Use Participants

Single-use participants are restricted to use RELAP5-3D on a single computer, one user at a time. They receive the RELAP5-3D executable code and may receive up to 5 hours of staff assistance. [16]

University Participants

University Participants may acquire a license to RELAP5-3D for educational purposes. [16]

Training Participants

Training participants have two main options available: they can receive a 3-month single-use license for the RELAP5-3D code and up to 10 hours of staff assistance, or a 3-month multiple-use license and up to 40 hours of on-call technical assistance. Alternative arrangements can be made based on customers' needs. These levels of participation are designed for those interested in participating in training courses. One set of RELAP5-3D training videos is included. [16]

Major RELAP5-3D Releases

Version [17] Date of Release [17]
RELAP5-3D 1.0.0July 6, 1997
RELAP5-3D 1.0.05September 19, 1997
RELAP5-3D 1.0.08September 24, 1998
RELAP5-3D 1.1.0November 23, 1998
RELAP5-3D 1.1.7August 4, 1999
RELAP5-3D 1.1.72October 28, 1999
RELAP5-3D 1.2.0May 5, 2000
RELAP5-3D 1.2.2June 26, 2000
RELAP5-3D 1.3.5 [18] March 14, 2001
RELAP5-3D 2.0.3 [19] August 21, 2002
RELAP5-3D 2.2 [20] October 30, 2003
RELAP5-3D 2.4 [21] October 5, 2006
RELAP5-3D 3.0.0 [22] November 29, 2010
RELAP5-3D 4.0.3 [17] July 12, 2012
RELAP5-3D 4.1.3 [17] October 8, 2013
RELAP5-3D 4.2.1 [1] June 30, 2014
RELAP5-3D 4.3.4October 9, 2015
RELAP5-3D 4.4.2June 25, 2018

Notes

  1. 1 2 "RELAP5-3D Newsletters". Inl.gov. Retrieved 2014-10-16.
  2. "??" (PDF). Inl.gov. Retrieved 2012-11-26.
  3. 1 2 "rv1.book" (PDF). Retrieved 2012-11-26.
  4. "RELAP5-3D". Inlportal.inl.gov. Retrieved 2012-11-26.
  5. 1 2 "RELAP5-3D HomePage File". Inl.gov. 2011-05-17. Retrieved 2012-11-26.
  6. "SAN - Safety Assessment Network". San.iaea.org. Retrieved 2012-11-26.
  7. "NE/RHP Computer Support". Engineering.oregonstate.edu. Retrieved 2012-11-26.
  8. Uspuras, E.; Kaliatka, A.; Bubelis, E. (2004). "Annals of Nuclear Energy - Validation of coupled neutronic/thermal-hydraulic code RELAP5-3D for RBMK-1500 reactor analysis application". Annals of Nuclear Energy. 31 (15): 1667–1708. doi:10.1016/j.anucene.2004.06.002.
  9. "Idaho National Laboratory - Technology Transfer - Technologies Available for Licensing". Inl.gov. Archived from the original on 2013-02-19. Retrieved 2012-11-26.
  10. "Relap5-3D" (PDF). Inl.gov. Retrieved 2012-11-26.
  11. "Recent Hydrodynamics Improvements to the REFLAP5-3D Code" (PDF). Inl.gov. Retrieved 2012-11-26.
  12. "2002con1435.pdf" (PDF). Retrieved 2012-11-26.
  13. "rv1.book" (PDF). Retrieved 2012-11-26.
  14. "Rv2.book" (PDF). Retrieved 2012-11-26.
  15. "RELAP5-3D International Users Group". Inl.gov. Retrieved 2012-11-26.
  16. 1 2 3 4 5 "RELAP5-3D Licensing Requests". relap53d.inl.gov. Retrieved 2018-02-21.
  17. 1 2 3 4 "RELAP5-3D Version Releases". Inl.gov. Retrieved 2012-11-26.
  18. "Release Notes for RELAP5-3D Version 1.3.5" (PDF). Inl.gov. Retrieved 2012-11-26.
  19. "Release Notes for RELAP5-3D? Version 2" (PDF). Retrieved 2012-11-26.
  20. "Release Notes for RELAP5-3D Version 2.2" (PDF). Inl.gov. Retrieved 2012-11-26.
  21. "Release Notes for RELAP5-3D Version 2" (PDF). Retrieved 2012-11-26.
  22. "Release Notes for RELAP5-3D Version 3.0" (PDF). Inl.gov. Retrieved 2012-11-26.

Related Research Articles

<span class="mw-page-title-main">Argonne National Laboratory</span> American science and engineering research laboratory in Illinois

Argonne National Laboratory is a federally funded research and development center in Lemont, Illinois, United States. Founded in 1946, the laboratory is owned by the United States Department of Energy and administered by UChicago Argonne LLC of the University of Chicago. The facility is the largest national laboratory in the Midwest.

<span class="mw-page-title-main">Experimental Breeder Reactor I</span> Historic decommissioned nuclear reactor in southeast Idaho, United States

Experimental Breeder Reactor I (EBR-I) is a decommissioned research reactor and U.S. National Historic Landmark located in the desert about 18 miles (29 km) southeast of Arco, Idaho. It was the world's first breeder reactor. At 1:50 p.m. on December 20, 1951, it became one of the world's first electricity-generating nuclear power plants when it produced sufficient electricity to illuminate four 200-watt light bulbs. EBR-I subsequently generated sufficient electricity to power its building, and continued to be used for experimental purposes until it was decommissioned in 1964. The museum is open for visitors from late May until early September.

<span class="mw-page-title-main">Neutron transport</span> Study of motions and interactions of neutrons

Neutron transport is the study of the motions and interactions of neutrons with materials. Nuclear scientists and engineers often need to know where neutrons are in an apparatus, in what direction they are going, and how quickly they are moving. It is commonly used to determine the behavior of nuclear reactor cores and experimental or industrial neutron beams. Neutron transport is a type of radiative transport.

<span class="mw-page-title-main">Idaho National Laboratory</span> Laboratory in Idaho Falls, Idaho, United States

Idaho National Laboratory (INL) is one of the national laboratories of the United States Department of Energy and is managed by the Battelle Energy Alliance. Historically, the lab has been involved with nuclear research, although the laboratory does other research as well. Much of current knowledge about how nuclear reactors behave and misbehave was discovered at what is now Idaho National Laboratory. John Grossenbacher, former INL director, said, "The history of nuclear energy for peaceful application has principally been written in Idaho".

<span class="mw-page-title-main">Sulfur–iodine cycle</span> Thermochemical process used to produce hydrogen

The sulfur–iodine cycle is a three-step thermochemical cycle used to produce hydrogen.

<span class="mw-page-title-main">SNAP-10A</span> Experimental nuclear-powered US Air Force satellite

SNAP-10A was a US experimental nuclear powered satellite launched into space in 1965 as part of the SNAPSHOT program. The test marked both the world's first operation of a nuclear reactor in orbit, and the first operation of an ion thruster system in orbit. It is the only fission reactor power system launched into space by the United States. The reactor stopped working after just 43 days due to a non-nuclear electrical component failure. The Systems Nuclear Auxiliary Power Program reactor was specifically developed for satellite use in the 1950s and early 1960s under the supervision of the U.S. Atomic Energy Commission.

<span class="mw-page-title-main">Supercritical water reactor</span> Concept nuclear reactor whose water operates at supercritical pressure

The supercritical water reactor (SCWR) is a concept Generation IV reactor, designed as a light water reactor (LWR) that operates at supercritical pressure. The term critical in this context refers to the critical point of water, and should not be confused with the concept of criticality of the nuclear reactor.

<span class="mw-page-title-main">High-temperature gas-cooled reactor</span> Type of nuclear reactor that operates at high temperatures as part of normal operation

A high-temperature gas-cooled reactor (HTGR) is a type of gas-cooled nuclear reactor which use uranium fuel and graphite moderation to produce very high reactor core output temperatures. All existing HTGR reactors use helium coolant. The reactor core can be either a "prismatic block" or a "pebble-bed" core. China Huaneng Group currently operates HTR-PM, a 250 MW HTGR power plant in Shandong province, China.

<span class="mw-page-title-main">Sodium-cooled fast reactor</span> Type of nuclear reactor cooled by molten sodium

A sodium-cooled fast reactor is a fast neutron reactor cooled by liquid sodium.

<span class="mw-page-title-main">Advanced Test Reactor</span> Idaho National Laboratory research neutron source

The Advanced Test Reactor (ATR) is a research reactor at the Idaho National Laboratory, located east of Arco, Idaho. This reactor was designed and is used to test nuclear fuels and materials to be used in power plants, naval propulsion, research and advanced reactors. It can operate at a maximum thermal power of 250 MW and has a "Four Leaf Clover" core design that allows for a variety of testing locations. The unique design allows for different neutron flux conditions in various locations. Six of the test locations allow an experiment to be isolated from the primary cooling system, providing its own environment for temperature, pressure, flow and chemistry, replicating the physical environment while accelerating the nuclear conditions.

<span class="mw-page-title-main">Next Generation Nuclear Plant</span> Cancelled American reactor project

A Next Generation Nuclear Plant (NGNP) is a specific proposed generation IV very-high-temperature reactor (VHTR) that could be coupled to a neighboring hydrogen production facility. It could also produce electricity and supply process heat. Up to 30% of this heat could be used to produce hydrogen via high-temperature electrolysis significantly reducing the cost of the process. The envisioned reactor design is helium-cooled, using graphite-moderated thermal neutrons, and TRISO fueled.

Matched Index of Refraction is a facility located at the Idaho National Laboratory built in the 1990s. The purpose of the fluid dynamics experiments in the MIR flow system at Idaho National Laboratory (INL) is to develop benchmark databases for the assessment of Computational Fluid Dynamics (CFD) solutions of the momentum equations, scalar mixing, and turbulence models for the flow ratios between coolant channels and bypass gaps in the interstitial regions of typical prismatic standard fuel element or upper reflector block geometries of typical Very High Temperature Reactors (VHTR) in the limiting case of negligible buoyancy and constant fluid properties.

<span class="mw-page-title-main">Office of Nuclear Energy</span> US government agency

The Office of Nuclear Energy (NE) is an agency of the United States Department of Energy which promotes nuclear power as a resource capable of meeting the energy, environmental, and national security needs of the United States by resolving technical and regulatory barriers through research, development, and demonstration.

<span class="mw-page-title-main">MOOSE (software)</span>

MOOSE is an object-oriented C++ finite element framework for the development of tightly coupled multiphysics solvers from Idaho National Laboratory. MOOSE makes use of the PETSc non-linear solver package and libmesh to provide the finite element discretization.

<span class="mw-page-title-main">Transient Reactor Test Facility</span> Nuclear facility in Idaho, USA

The Transient Reactor Test Facility (TREAT) is an air-cooled, graphite moderated, thermal spectrum test nuclear reactor designed to test reactor fuels and structural materials. Constructed in 1958, and operated from 1959 until 1994, TREAT was built to conduct transient reactor tests where the test material is subjected to neutron pulses that can simulate conditions ranging from mild transients to reactor accidents. TREAT was designed by Argonne National Laboratory, and is located at the Idaho National Laboratory. Since original construction, the facility had additions or systems upgrades in 1963, 1972, 1982, and 1988. The 1988 addition was extensive, and included upgrades of most of the instrumentation and control systems.

The Aurora powerhouse is an advanced fission plant concept design that received a site use permit for testing in 2020 from the United States Department of Energy (DOE). The site use permit, issued in December 2019 is not a Nuclear Regulatory Commission permit. It is the "first and only permit ever issued in the U.S. to a nuclear plant using something other than a light water ("water-cooled") reactor". It will use "recycled" high-assay, low-enriched uranium (HALEU) fuel originally fabricated for the Experimental Breeder Reactor II (EBR-II), and if fully operational, would become "the first fuel-recycling commercial reactor in the United States". The DOE's Idaho National Laboratory (INL) said it would provide 10 tons of HALEU for the test reactor which corresponds to most of the available supply. Reprocessing would occur at INL's Materials and Fuels Complex (MFC) and possibly also the Idaho Nuclear Technology and Engineering Center (INTEC), neither of which are operational facilities as of early 2020.

Argonne Fast Source Reactor (AFSR) was a research reactor which was located at the Argonne National Laboratory, a United States Department of Energy national laboratory, facility located in the high desert of southeastern Idaho between Idaho Falls, Idaho and Arco, Idaho.

Advanced Reactivity Measurement Facility I (ARMF-I) was a research reactor which was located at the Argonne National Laboratory, a United States Department of Energy national laboratory, facility located in the high desert of southeastern Idaho between Idaho Falls, Idaho and Arco, Idaho. ARMF-I was nearly identical to ARMF-II.

Advanced Reactivity Measurement Facility II (ARMF-II) was a research reactor which was located at the Argonne National Laboratory, a United States Department of Energy national laboratory, facility located in the high desert of southeastern Idaho between Idaho Falls, Idaho and Arco, Idaho. ARMF-II was nearly identical to ARMF-I.

References