Morteza Mahmoudi

Last updated
Morteza Mahmoudi
مرتضی محمودی
Born1979
Education University of Tehran (BSc), Amirkabir University of Technology (MSc), Sharif University of Technology (PhD), Stanford University (PostDoc)
Awards BRIght Futures Prize, IGNITE Award, USERN Prize
Scientific career
Fields nanotechnology
Institutions Michigan State University, Harvard University, Stanford University
Website https://paritymovement.org/about/

Morteza Mahmoudi (born 1979) is an Iranian-American nanotechnologist and Assistant Professor in the Department of Radiology at Michigan State University. [1] Previously, he was an assistant professor at Harvard University. Mahmoudi is a winner of 2018 BRIght Futures Prize, 2018 IGNITE Award, [2] and 2016 USERN Prize. [3] [4] He is best known for his works on academic bullying; [5] [6] [7] [8] [9] [10] [11] he is also a co-founder of a non-profit organization called the Academic Parity Movement which is focused on addressing academic bullying issue in various disciplines. [12] [13]

Contents

Books

Related Research Articles

Nanomedicine is the medical application of nanotechnology. Nanomedicine ranges from the medical applications of nanomaterials and biological devices, to nanoelectronic biosensors, and even possible future applications of molecular nanotechnology such as biological machines. Current problems for nanomedicine involve understanding the issues related to toxicity and environmental impact of nanoscale materials.

<span class="mw-page-title-main">Plasmon</span> Quasiparticle of charge oscillations in condensed matter

In physics, a plasmon is a quantum of plasma oscillation. Just as light consists of photons, the plasma oscillation consists of plasmons. The plasmon can be considered as a quasiparticle since it arises from the quantization of plasma oscillations, just like phonons are quantizations of mechanical vibrations. Thus, plasmons are collective oscillations of the free electron gas density. For example, at optical frequencies, plasmons can couple with a photon to create another quasiparticle called a plasmon polariton.

<span class="mw-page-title-main">Colloidal gold</span> Suspension of gold nanoparticles in a liquid

Colloidal gold is a sol or colloidal suspension of nanoparticles of gold in a fluid, usually water. The colloid is coloured usually either wine red or blue-purple . Due to their optical, electronic, and molecular-recognition properties, gold nanoparticles are the subject of substantial research, with many potential or promised applications in a wide variety of areas, including electron microscopy, electronics, nanotechnology, materials science, and biomedicine.

<span class="mw-page-title-main">Nanoparticle</span> Particle with size less than 100 nm

A nanoparticle or ultrafine particle is a particle of matter 1 to 100 nanometres (nm) in diameter. The term is sometimes used for larger particles, up to 500 nm, or fibers and tubes that are less than 100 nm in only two directions. At the lowest range, metal particles smaller than 1 nm are usually called atom clusters instead.

<span class="mw-page-title-main">Nanobiotechnology</span> Intersection of nanotechnology and biology

Nanobiotechnology, bionanotechnology, and nanobiology are terms that refer to the intersection of nanotechnology and biology. Given that the subject is one that has only emerged very recently, bionanotechnology and nanobiotechnology serve as blanket terms for various related technologies.

<span class="mw-page-title-main">Nanochemistry</span> Combination of chemistry and nanoscience

Nanochemistry is an emerging sub-discipline of the chemical and material sciences that deals with the development of new methods for creating nanoscale materials. The term "nanochemistry" was first used by Ozin in 1992 as 'the uses of chemical synthesis to reproducibly afford nanomaterials from the atom "up", contrary to the nanoengineering and nanophysics approach that operates from the bulk "down"'. Nanochemistry focuses on solid-state chemistry that emphasizes synthesis of building blocks that are dependent on size, surface, shape, and defect properties, rather than the actual production of matter. Atomic and molecular properties mainly deal with the degrees of freedom of atoms in the periodic table. However, nanochemistry introduced other degrees of freedom that controls material's behaviors by transformation into solutions. Nanoscale objects exhibit novel material properties, largely as a consequence of their finite small size. Several chemical modifications on nanometer-scaled structures approve size dependent effects.

<span class="mw-page-title-main">Nanocomposite</span> Solid material with nano-scale structure

Nanocomposite is a multiphase solid material where one of the phases has one, two or three dimensions of less than 100 nanometers (nm) or structures having nano-scale repeat distances between the different phases that make up the material.

Scanning probe lithography (SPL) describes a set of nanolithographic methods to pattern material on the nanoscale using scanning probes. It is a direct-write, mask-less approach which bypasses the diffraction limit and can reach resolutions below 10 nm. It is considered an alternative lithographic technology often used in academic and research environments. The term scanning probe lithography was coined after the first patterning experiments with scanning probe microscopes (SPM) in the late 1980s.

<span class="mw-page-title-main">Artificial enzyme</span>

An artificial enzyme is a synthetic organic molecule or ion that recreates one or more functions of an enzyme. It seeks to deliver catalysis at rates and selectivity observed in naturally occurring enzymes.

Magnetic nanoparticles are a class of nanoparticle that can be manipulated using magnetic fields. Such particles commonly consist of two components, a magnetic material, often iron, nickel and cobalt, and a chemical component that has functionality. While nanoparticles are smaller than 1 micrometer in diameter, the larger microbeads are 0.5–500 micrometer in diameter. Magnetic nanoparticle clusters that are composed of a number of individual magnetic nanoparticles are known as magnetic nanobeads with a diameter of 50–200 nanometers. Magnetic nanoparticle clusters are a basis for their further magnetic assembly into magnetic nanochains. The magnetic nanoparticles have been the focus of much research recently because they possess attractive properties which could see potential use in catalysis including nanomaterial-based catalysts, biomedicine and tissue specific targeting, magnetically tunable colloidal photonic crystals, microfluidics, magnetic resonance imaging, magnetic particle imaging, data storage, environmental remediation, nanofluids, optical filters, defect sensor, magnetic cooling and cation sensors.

<span class="mw-page-title-main">Nanodiamond</span> Extremely small diamonds used for their thermal, mechanical and optoelectronic properties

Nanodiamonds, or diamond nanoparticles, are diamonds with a size below 100 nanometers. They can be produced by impact events such as an explosion or meteoritic impacts. Because of their inexpensive, large-scale synthesis, potential for surface functionalization, and high biocompatibility, nanodiamonds are widely investigated as a potential material in biological and electronic applications and quantum engineering.

<span class="mw-page-title-main">Silver nanoparticle</span> Ultrafine particles of silver between 1 nm and 100 nm in size

Silver nanoparticles are nanoparticles of silver of between 1 nm and 100 nm in size. While frequently described as being 'silver' some are composed of a large percentage of silver oxide due to their large ratio of surface to bulk silver atoms. Numerous shapes of nanoparticles can be constructed depending on the application at hand. Commonly used silver nanoparticles are spherical, but diamond, octagonal, and thin sheets are also common.

<span class="mw-page-title-main">DNA nanotechnology</span> The design and manufacture of artificial nucleic acid structures for technological uses

DNA nanotechnology is the design and manufacture of artificial nucleic acid structures for technological uses. In this field, nucleic acids are used as non-biological engineering materials for nanotechnology rather than as the carriers of genetic information in living cells. Researchers in the field have created static structures such as two- and three-dimensional crystal lattices, nanotubes, polyhedra, and arbitrary shapes, and functional devices such as molecular machines and DNA computers. The field is beginning to be used as a tool to solve basic science problems in structural biology and biophysics, including applications in X-ray crystallography and nuclear magnetic resonance spectroscopy of proteins to determine structures. Potential applications in molecular scale electronics and nanomedicine are also being investigated.

Bullying in academia is a form of workplace bullying which takes place at institutions of higher education, such as colleges and universities in a wide range of actions. It is believed to be common, although has not received as much attention from researchers as bullying in some other contexts. Academia is highly competitive and has a well defined hierarchy, with junior staff being particularly vulnerable. Although most universities have policies on workplace bullying, individual campuses develop and implement their own protocols. This often leaves victims with no recourse.

<span class="mw-page-title-main">Spherical nucleic acid</span>

Spherical nucleic acids (SNAs) are nanostructures that consist of a densely packed, highly oriented arrangement of linear nucleic acids in a three-dimensional, spherical geometry. This novel three-dimensional architecture is responsible for many of the SNA's novel chemical, biological, and physical properties that make it useful in biomedicine and materials synthesis. SNAs were first introduced in 1996 by Chad Mirkin’s group at Northwestern University.

<span class="mw-page-title-main">Self-assembly of nanoparticles</span> Physical phenomenon

Nanoparticles are classified as having at least one of its dimensions in the range of 1-100 nanometers (nm). The small size of nanoparticles allows them to have unique characteristics which may not be possible on the macro-scale. Self-assembly is the spontaneous organization of smaller subunits to form larger, well-organized patterns. For nanoparticles, this spontaneous assembly is a consequence of interactions between the particles aimed at achieving a thermodynamic equilibrium and reducing the system’s free energy. The thermodynamics definition of self-assembly was introduced by Professor Nicholas A. Kotov. He describes self-assembly as a process where components of the system acquire non-random spatial distribution with respect to each other and the boundaries of the system. This definition allows one to account for mass and energy fluxes taking place in the self-assembly processes.

<span class="mw-page-title-main">Nicholas A. Kotov</span>

Nicholas A. Kotov is the Irving Langmuir Distinguished Professor of Chemical Sciences and Engineering at the University of Michigan in Ann Arbor, MI, USA. Prof. Nicholas Kotov demonstrated that the ability to self-organize into complex structures is the unifying property of all inorganic nanostructures. He has developed a family of bioinspired composite materials with a wide spectrum of properties that were previously unattainable in classical materials. These composite biomimetic materials are exemplified by his nacre-like ultrastrong yet transparent composites, enamel-like, stiff yet vibration-isolating composites, and cartilage-like membranes with both high strength and ion conductance.

<span class="mw-page-title-main">Chemiresistor</span>

A chemiresistor is a material that changes its electrical resistance in response to changes in the nearby chemical environment. Chemiresistors are a class of chemical sensors that rely on the direct chemical interaction between the sensing material and the analyte. The sensing material and the analyte can interact by covalent bonding, hydrogen bonding, or molecular recognition. Several different materials have chemiresistor properties: metal-oxide semiconductors, some conductive polymers, and nanomaterials like graphene, carbon nanotubes and nanoparticles. Typically these materials are used as partially selective sensors in devices like electronic tongues or electronic noses.

<span class="mw-page-title-main">Liquid-Phase Electron Microscopy</span>

Liquid-phase electron microscopy refers to a class of methods for imaging specimens in liquid with nanometer spatial resolution using electron microscopy. LP-EM overcomes the key limitation of electron microscopy: since the electron optics requires a high vacuum, the sample must be stable in a vacuum environment. Many types of specimens relevant to biology, materials science, chemistry, geology, and physics, however, change their properties when placed in a vacuum.

<span class="mw-page-title-main">Irshad Hussain</span> Pakistani Scientist

Irshad Hussain is a Pakistani Scientist in the field of chemistry and among the few pioneers to initiate nanomaterials research in Pakistan.

References

  1. "MAHMOUDI, MORTEZA". cancer.msu.edu.
  2. "2018 IGNITE Awardees – Connors Center". 2 December 2018.
  3. "BWH Awards, Honors & Grants - Brigham and Women's Hospital". www.brighamandwomens.org.
  4. "Dr. Morteza Mahmoudi among the USERN Laureates 2016". Sharif University.
  5. "Academic bullying: Desperate for data and solutions". Science Magazine.
  6. "You are not alone!". 30 September 2020.
  7. Mahmoudi, Morteza (2020-08-31). "A survivor's guide to academic bullying". Nature Human Behaviour. 4 (11): 1091. doi:10.1038/s41562-020-00937-1. PMID   32868883. S2CID   221403792.
  8. Mahmoudi, Morteza (2021). "Academic bullying: How to be an ally". Science. 373 (6558): 974. Bibcode:2021Sci...373..974M. doi: 10.1126/science.abl7492 . PMID   34446599. S2CID   237308678.
  9. Mahmoudi; Moss, Sherry (2019). "Tie institutions' reputations to their anti-bullying record". Nature. 572 (7770): 439. Bibcode:2019Natur.572..439M. doi:10.1038/d41586-019-02493-9. PMID   31431747. S2CID   201065101.
  10. Mahmoudi, Morteza (2018). "Improve reporting systems for academic bullying". Nature. 562 (7728): 494. Bibcode:2018Natur.562R.494M. doi: 10.1038/d41586-018-07154-x . PMID   30356195. S2CID   53028091.
  11. Mahmoudi, Morteza (2019). "The need for a global committee on academic behaviour ethics". The Lancet. 394 (10207): 1410. doi: 10.1016/S0140-6736(19)31361-3 . PMID   31631849. S2CID   204759886.
  12. "About". Parity Movement. 24 July 2019.
  13. Täuber, Susanne; Mahmoudi, Morteza (2022). "How bullying becomes a career tool". Nature Human Behaviour. 6 (4): 475. doi:10.1038/s41562-022-01311-z. PMID   35132170. S2CID   246651521.