Morton's theorem

Last updated

Morton's theorem is a poker principle articulated by Andy Morton in a Usenet poker newsgroup. It states that in multi-way pots, a player's expectation may be maximized by an opponent making a correct decision.

Contents

The most common application of Morton's theorem occurs when one player holds the best hand, but there are two or more opponents on draws. In this case, the player with the best hand might make more money in the long run when an opponent folds to a bet, even if that opponent is folding correctly and would be making a personal mistake to call the bet. This type of situation is sometimes referred to as implicit collusion.

Morton's theorem contrasts with the fundamental theorem of poker, which states that a player wants their opponents to make decisions which minimize their own expectation. The two theorems differ in the presence of more than one opponent: whereas the fundamental theorem always applies heads-up (one opponent), it does not always apply in multiway pots.

The scope of Morton's theorem in multi-way situations is a subject of controversy. [1] Morton expressed[ specify ] the belief that his theorem is generically applicable in multi-way pots, so that the fundamental theorem rarely applies except for heads-up situations.

An example

The following example is credited to Morton, [2] who first posted a version of it [3] on the Usenet newsgroup rec.gambling.poker.

Suppose in limit hold'em a player named Arnold holds A♦K♣ and the flop is K♠9♥3♥, giving him top pair with best kicker. When the betting on the flop is complete, Arnold has two opponents remaining, named Brenda and Charles. Arnold is certain that Brenda has the nut flush draw (for example A♥J♥, giving her 9 outs), and he believes that Charles holds second pair with a random kicker (for example Q♣9♣, 4 outs — not the Q♥). The rest of the deck results in a win for Arnold. The turn card is an apparent blank (for example 6♦) and the pot size at this point is P, expressed in big bets.

When Arnold bets the turn, Brenda, holding the flush draw, is sure to call and is almost certainly getting the correct pot odds to do so. Once Brenda calls, Charles must decide whether to call or fold. To figure out which action he should choose, we calculate his expectation in each case. This depends on the number of cards among the remaining 42 that will give him the best hand, and the current size of the pot. (Here, as in arguments involving the fundamental theorem, we assume that each player has complete information of their opponents' cards.)

Charles doesn't win or lose anything by folding. When calling, he wins the pot 4/42 of the time, and loses one big bet the remainder of the time. Setting these two expectations equal and solving for P lets us determine the pot size at which he is indifferent to calling or folding:

When the pot is larger than this, Charles should continue; otherwise, it's in his best interest to fold.

To figure out which action on Charles' part Arnold would prefer, we calculate Arnold's expectation the same way:

Arnold's expectation depends in each case on the size of the pot (in other words, the pot odds Charles is getting when considering his call). Setting these two equal lets us calculate the pot size P where Arnold is indifferent whether Charles calls or folds:

When the pot is smaller than this, Arnold profits when Charles is chasing, but when the pot is larger than this, Arnold's expectation is higher when Charles folds instead of chasing.

Hence, there is a range of pot sizes where both:

(a) it's correct for Charles to fold, and (b) Arnold makes more money when Charles (correctly) folds, than when he (incorrectly) chases.

This can be seen graphically below.

                              |                 C SHOULD FOLD | C SHOULD CALL                               |                               v                      |      WANTS C TO CALL | WANTS C TO FOLD                      |                      v +---+---+---+---+---+---+---+---+---> pot size P in big bets 0   1   2   3   4   5   6   7   8                      XXXXXXXXXX                          ^                 "PARADOXICAL REGION"

The range of pot sizes marked with the X's is where Arnold wants Charles (C) to fold correctly, because he loses expectation when Charles calls incorrectly.

Analysis

In essence, in the above example, when Charles calls in the "paradoxical region", he is paying too high a price for his weak draw, but Arnold is no longer the sole benefactor of that high price Brenda is now taking Charles' money those times when Brenda makes her flush draw. Compared to the case where Arnold is heads up with Charles, Arnold still stands the risk of losing the whole pot, but he is no longer getting 100% of the compensation from Charles' loose calls.

It is the existence of this middle region of pot sizes, where a player wants at least some of their opponents to fold correctly, that explains the standard poker strategy of thinning the field as much as possible whenever a player thinks they hold the best hand. Even opponents with incorrect draws cost a player money when they call their bets, because part of these calls end up in the stacks of other opponents drawing against them.

Because Arnold is losing expectation from Charles' call, it follows that the aggregate of all other opponents (i.e., Brenda and Charles) must be gaining from Charles' call. In other words, if Brenda and Charles were to meet in the parking lot after the game and split their profits, they would have been colluding against Arnold. This is sometimes referred to as implicit collusion. It should be contrasted with what is sometimes called schooling. Schooling occurs when many opponents correctly call against a player with the best hand, whereas implicit collusion occurs when an opponent incorrectly calls against a player with the best hand.

One conclusion of Morton's theorem is that, in a loose hold'em game, the value of suited hands goes up because they are precisely the type of hand that will benefit from implicit collusion.

See also

Notes

  1. For example, see "Understanding The Nature Of Poker By Playing Against Everyone In the World" Archived 2002-03-21 at the Wayback Machine by Mike Caro from pokerpages.com
  2. Going Too Far & Implicit Collusion from rec.gambling.poker via Google Groups.
  3. Some numbers have been changed to allow for complete information.

Related Research Articles

<span class="mw-page-title-main">Expected value</span> Average value of a random variable

In probability theory, the expected value is a generalization of the weighted average. Informally, the expected value is the arithmetic mean of a large number of independently selected outcomes of a random variable.

In poker, the strength of a hand is often called its value; however, in the context of poker strategy the term is more often used to describe a betting tactic, a bet for value. This bet is intended to increase the size of the pot, by inducing opponents to call. A bet for value is in contrast to a bluff or a protection bet.

In poker, pot odds are the ratio of the current size of the pot to the cost of a contemplated call. Pot odds are compared to the odds of winning a hand with a future card in order to estimate the call's expected value. The purpose of this is to statistically guide a player's decision between the options of call or fold. Raising is an alternative to place this decision on the opponent.

In probability theory, the central limit theorem (CLT) establishes that, in many situations, for independent and identically distributed random variables, the sampling distribution of the standardized sample mean tends towards the standard normal distribution even if the original variables themselves are not normally distributed.

<span class="mw-page-title-main">Bluff (poker)</span> Tactic in poker and other card games

In the card game of poker, a bluff is a bet or raise made with a hand which is not thought to be the best hand. To bluff is to make such a bet. The objective of a bluff is to induce a fold by at least one opponent who holds a better hand. The size and frequency of a bluff determines its profitability to the bluffer. By extension, the phrase "calling somebody's bluff" is often used outside the context of poker to describe situations where one person demands that another proves a claim, or proves that they are not being deceptive.

<span class="mw-page-title-main">Law of large numbers</span> Averages of repeated trials converge to the expected value

In probability theory, the law of large numbers (LLN) is a theorem that describes the result of performing the same experiment a large number of times. According to the law, the average of the results obtained from a large number of trials should be close to the expected value and tends to become closer to the expected value as more trials are performed.

The fundamental theorem of poker is a principle first articulated by David Sklansky that he believes expresses the essential nature of poker as a game of decision-making in the face of incomplete information.

Every time you play a hand differently from the way you would have played it if you could see all your opponents' cards, they gain; and every time you play your hand the same way you would have played it if you could see all their cards, they lose. Conversely, every time opponents play their hands differently from the way they would have if they could see all your cards, you gain; and every time they play their hands the same way they would have played if they could see all your cards, you lose.

<span class="mw-page-title-main">Standard error</span> Statistical property

The standard error (SE) of a statistic is the standard deviation of its sampling distribution or an estimate of that standard deviation. If the statistic is the sample mean, it is called the standard error of the mean (SEM).

<span class="mw-page-title-main">Binomial series</span> Taylor series

In mathematics, the binomial series is a generalization of the polynomial that comes from a binomial formula expression like for a nonnegative integer . Specifically, the binomial series is the Taylor series for the function centered at , where and . Explicitly,

Quantum statistical mechanics is statistical mechanics applied to quantum mechanical systems. In quantum mechanics a statistical ensemble is described by a density operator S, which is a non-negative, self-adjoint, trace-class operator of trace 1 on the Hilbert space H describing the quantum system. This can be shown under various mathematical formalisms for quantum mechanics. One such formalism is provided by quantum logic.

Kuhn poker is a simplified form of poker developed by Harold W. Kuhn as a simple model zero-sum two-player imperfect-information game, amenable to a complete game-theoretic analysis. In Kuhn poker, the deck includes only three playing cards, for example a King, Queen, and Jack. One card is dealt to each player, which may place bets similarly to a standard poker. If both players bet or both players pass, the player with the higher card wins, otherwise, the betting player wins.

<span class="mw-page-title-main">Consistent estimator</span> Statistical estimator converging in probability to a true parameter as sample size increases

In statistics, a consistent estimator or asymptotically consistent estimator is an estimator—a rule for computing estimates of a parameter θ0—having the property that as the number of data points used increases indefinitely, the resulting sequence of estimates converges in probability to θ0. This means that the distributions of the estimates become more and more concentrated near the true value of the parameter being estimated, so that the probability of the estimator being arbitrarily close to θ0 converges to one.

In statistics and information theory, a maximum entropy probability distribution has entropy that is at least as great as that of all other members of a specified class of probability distributions. According to the principle of maximum entropy, if nothing is known about a distribution except that it belongs to a certain class, then the distribution with the largest entropy should be chosen as the least-informative default. The motivation is twofold: first, maximizing entropy minimizes the amount of prior information built into the distribution; second, many physical systems tend to move towards maximal entropy configurations over time.

<span class="mw-page-title-main">Badugi</span> Draw poker variant

Badugi is a draw poker variant similar to triple draw, with hand-values similar to lowball. The betting structure and overall play of the game is identical to a standard poker game using blinds, but, unlike traditional poker which involves a minimum of five cards, players' hands contain only four cards at any one time. During each of three drawing rounds, players can trade zero to four cards from their hands for new ones from the deck, in an attempt to form the best badugi hand and win the pot. Badugi is often a gambling game, with the object being to win money in the form of pots. The winner of the pot is the person with the best badugi hand at the conclusion of play. Badugi is played in cardrooms around the world, as well as online, in rooms such as PokerStars. Although it hasn’t had its own tournament per se at the WSOP, it is featured in the Dealers Choice events as well as in the Triple Draw Mix. The 2023 WSOP event does have a Badugi tournament scheduled.

Fold equity is a concept in poker strategy that is especially important when a player becomes short-stacked in a no limit tournament. It is the equity a player can expect to gain due to the opponent folding to his or her bets. It equates to:

The mathematics of gambling is a collection of probability applications encountered in games of chance and can get included in game theory. From a mathematical point of view, the games of chance are experiments generating various types of aleatory events, and it is possible to calculate by using the properties of probability on a finite space of possibilities.

In no-limit or pot-limit poker, a player's M-ratio is a measure of the health of a player's chip stack as a function of the cost to play each round. In simple terms, a player can sit passively in the game, making only compulsory bets, for M laps of the dealer button before running out of chips. A high M means the player can afford to wait a high number of rounds before making a move. The concept applies primarily in tournament poker; in a cash game, a player can in principle manipulate his M at will, simply by purchasing more chips.

<span class="mw-page-title-main">Coupon collector's problem</span> Problem in probability theory

In probability theory, the coupon collector's problem describes "collect all coupons and win" contests. It asks the following question: If each box of a brand of cereals contains a coupon, and there are n different types of coupons, what is the probability that more than t boxes need to be bought to collect all n coupons? An alternative statement is: Given n coupons, how many coupons do you expect you need to draw with replacement before having drawn each coupon at least once? The mathematical analysis of the problem reveals that the expected number of trials needed grows as . For example, when n = 50 it takes about 225 trials on average to collect all 50 coupons.

Poker is a popular card game that combines elements of chance and strategy. There are various styles of poker, all of which share an objective of presenting the least probable or highest-scoring hand. A poker hand is usually a configuration of five cards depending on the variant, either held entirely by a player or drawn partly from a number of shared, community cards. Players bet on their hands in a number of rounds as cards are drawn, employing various mathematical and intuitive strategies in an attempt to better opponents.

Evaluation measures for an information retrieval (IR) system assess how well an index, search engine or database returns results from a collection of resources that satisfy a user's query. They are therefore fundamental to the success of information systems and digital platforms. The success of an IR system may be judged by a range of criteria including relevance, speed, user satisfaction, usability, efficiency and reliability. However, the most important factor in determining a system's effectiveness for users is the overall relevance of results retrieved in response to a query. Evaluation measures may be categorised in various ways including offline or online, user-based or system-based and include methods such as observed user behaviour, test collections, precision and recall, and scores from prepared benchmark test sets.