Mullite

Last updated
Mullite
Osumilite, thick tabulars with Mullite - Ochtendung, Eifel, Germany.jpg
White, filamentous mullite in front of thicker osumilite platelets
(Photo width 1.5 mm)
Found in Wannenköpfe, Ochtendung, Eifel, Germany
General
Category Nesosilicate
Formula
(repeating unit)
Al6Si2O13
IMA symbol Mul [1]
Strunz classification 9.AF.20
Crystal system Orthorhombic
Crystal class Dipyramidal (mmm)
H-M symbol: (2/m 2/m 2/m)
Space group Pbnm, Pnnm
Unit cell a = 7.5785(6) Å,
b = 7.6817(7) Å,
c = 2.8864(3) Å; Z = 1
Identification
ColorColorless to pale pink or grey
Crystal habit Prismatic to acicular crystals
Cleavage Good on [010]
Optical propertiesBiaxial (+)
Refractive index nα = 1.642 - 1.653 nβ = 1.644 - 1.655 nγ = 1.654 - 1.679
Birefringence δ = 0.012 - 0.026
2V angle Measured: 20° to 50°
References [2] [3] [4] [5]

Mullite or porcelainite [6] is a rare silicate mineral formed during contact metamorphism of clay minerals. It can form two stoichiometric forms: 3Al 2 O 32SiO2 or 2Al2O3 SiO2. Unusually, mullite has no charge-balancing cations present. As a result, there are three different aluminium sites: two distorted tetrahedral and one octahedral.

Contents

Mullite was first described in 1924 for an occurrence on the Isle of Mull, Scotland. [5] It occurs as argillaceous inclusions in volcanic rocks in the Isle of Mull, inclusions in sillimanite within a tonalite at Val Sissone, Italy and with emerylike rocks in Argyllshire, Scotland. [3]

Porcellanite

Mullite (porcelainite) can be found as a constituent mineral in a type of thermally-metamorphosed rock called porcellanite. [7]

Use in porcelain

Mullite is present in the form of needles in porcelain. [8]

It is produced during various melting and firing processes, and is used as a refractory material, [9] because of its high melting point of 1840 °C. [10]

In 2006 researchers at University College London and Cardiff University discovered that potters in the Hesse region of Germany since the late Middle Ages had used mullite in the manufacture of a type of crucible (known as Hessian crucibles), that were renowned for enabling alchemists to heat their crucibles to very high temperatures. [11] [12] The formula finally replicated in the above studies (using kaolinitic clay and then firing it at temperatures above 1100 °C) was kept a closely guarded secret by those crucible makers since the 15th century.

Mullite morphology is also important for its application. In this case, there are two common morphologies for mullite. One is a platelet shape with low aspect ratio and the second is a needle shape with high aspect ratio. If the needle shape mullite can form in a ceramic body during sintering, it has an effect on both the mechanical and physical properties by increasing the mechanical strength and thermal shock resistance. The most important condition relates to ceramic chemical composition. If the silica and alumina ratio with low basic materials such as sodium and calcium is adjusted, the needle shape mullite forms at about 1400 °C and the needles will interlock. This mechanical interlocking contributes to the high mechanical strength of porcelain. [13] [14]

Use as a catalyst

Further recent research indicates that a synthetic analogue of mullite can be an effective replacement for platinum in diesel engines for exhaust management. [15]

Notes

  1. Warr, L.N. (2021). "IMA–CNMNC approved mineral symbols". Mineralogical Magazine. 85 (3): 291–320. Bibcode:2021MinM...85..291W. doi: 10.1180/mgm.2021.43 . S2CID   235729616.
  2. Mineralienatlas
  3. 1 2 http://rruff.geo.arizona.edu/doclib/hom/mullite.pdf Handbook of Mineralogy
  4. http://www.mindat.org/min-2806.html Mindat
  5. 1 2 http://webmineral.com/data/Mullite.shtml Webmineral
  6. Neuendorf, K.K.E.; Mehl, J.P. Jr.; Jackson, J.A., eds. (2005). Glossary of Geology (5th ed.). Alexandria, Virginia: American Geological Institute. p. 428. ISBN   978-0922152896.
  7. Fediuk, F.; Langrova, A.; Melka, K. (2003). "North Bohemian Porcellanites and their Mineral Composition: the Case of the Dobrčice Quarry, the Most Basin" (PDF). Geolines. 15: 35–43.
  8. Kingery, W.D., ed. (1960). Ceramic Fabrication Processes. New York City: John Wiley & Sons, Inc.
  9. H. Schneider & S. Komarneni (2005) Mullite. Wiley, VCH, 509 pp, ISBN   3-527-30974-8
  10. Kyanite Mining Corporation (2009-10-25). "Virginia Mullite".
  11. University College London (2006-11-23). "21st Century Technology Cracks Alchemists' Secret Recipe". Science Daily . ScienceDaily LLC. Retrieved 2008-01-12.
  12. Martinon-Torres M.; Freestone I.C.; Hunt, A.; Rehren, T. (2005). "Mass-produced mullite crucibles in medieval Europe: Manufacture and material properties". Journal of the American Ceramic Society. 91 (6): 2071–2074. doi:10.1111/j.1551-2916.2008.02383.x.
  13. Hanson, Tony. "Mullite". digitalfire.com. Retrieved 2023-05-21.
  14. "Vitrification Behaviour of The Porcelain Tile". Ceramics Research Co. 2012. Retrieved May 21, 2023.
  15. Wang, W.; G. McCool; N. Kapur; G. Yuan; B. Shan; M. Nguyen; U. M. Graham; B. H. Davis; G. Jacobs; K. Cho; X. Hao (17 August 2012). "Mixed-Phase Oxide Catalyst Based on Mn-Mullite (Sm, Gd)Mn2O5 for NO Oxidation in Diesel Exhaust". Science. 337 (6096): 832–835. Bibcode:2012Sci...337..832W. doi:10.1126/science.1225091. PMID   22904009. S2CID   27948924 . Retrieved 2012-08-16.

Related Research Articles

<span class="mw-page-title-main">Lazurite</span> Alumino-silicate mineral whose blue colour is due to a sulfide species and not copper

Lazurite, old name Azure spar is a tectosilicate mineral with sulfate, sulfur and chloride with formula (Na,Ca)8[(S,Cl,SO4,OH)2|(Al6Si6O24)]. It is a feldspathoid and a member of the sodalite group. Lazurite crystallizes in the isometric system although well‐formed crystals are rare. It is usually massive and forms the bulk of the gemstone lapis lazuli.

<span class="mw-page-title-main">Petalite</span> Silicate mineral, used in ceramic glazing

Petalite, also known as castorite, is a lithium aluminum tektosilicate mineral LiAlSi4O10, crystallizing in the monoclinic system. Petalite occurs as colorless, pink, grey, yellow, yellow grey, to white tabular crystals and columnar masses. It occurs in lithium-bearing pegmatites with spodumene, lepidolite, and tourmaline. Petalite is an important ore of lithium, and is converted to spodumene and quartz by heating to ~500 °C and under 3 kbar of pressure in the presence of a dense hydrous alkali borosilicate fluid with a minor carbonate component. Petalite (and secondary spodumene formed from it) is lower in iron than primary spodumene, making it a more useful source of lithium in, e.g., the production of glass. The colorless varieties are often used as gemstones.

<span class="mw-page-title-main">Crucible</span> Container in which substances are heated

A crucible is a container in which metals or other substances may be melted or subjected to very high temperatures. Although crucibles have historically tended to be made out of clay, they can be made from any material that withstands temperatures high enough to melt or otherwise alter its contents.

<span class="mw-page-title-main">Sillimanite</span> Nesosilicate mineral

Sillimanite or fibrolite is an aluminosilicate mineral with the chemical formula Al2SiO5. Sillimanite is named after the American chemist Benjamin Silliman (1779–1864). It was first described in 1824 for an occurrence in Chester, Connecticut.

<span class="mw-page-title-main">Nepheline</span> Silica-undersaturated aluminosilicate mineral

Nepheline, also called nephelite (from Ancient Greek νεφέλη (nephélē) 'cloud'), is a rock-forming mineral in the feldspathoid group – a silica-undersaturated aluminosilicate, Na3KAl4Si4O16, that occurs in intrusive and volcanic rocks with low silica, and in their associated pegmatites. It is used in glass and ceramic manufacturing and other industries, and has been investigated as an ore of aluminium.

<span class="mw-page-title-main">Staurolite</span> Reddish brown to black nesosilicate mineral

Staurolite is a reddish brown to black, mostly opaque, nesosilicate mineral with a white streak. It crystallizes in the monoclinic crystal system, has a Mohs hardness of 7 to 7.5 and the chemical formula: Fe2+2Al9O6(SiO4)4(O,OH)2. Magnesium, zinc and manganese substitute in the iron site and trivalent iron can substitute for aluminium.

<span class="mw-page-title-main">Chromite</span> Crystalline mineral

Chromite is a crystalline mineral composed primarily of iron(II) oxide and chromium(III) oxide compounds. It can be represented by the chemical formula of FeCr2O4. It is an oxide mineral belonging to the spinel group. The element magnesium can substitute for iron in variable amounts as it forms a solid solution with magnesiochromite (MgCr2O4). A substitution of the element aluminium can also occur, leading to hercynite (FeAl2O4). Chromite today is mined particularly to make stainless steel through the production of ferrochrome (FeCr), which is an iron-chromium alloy.

<span class="mw-page-title-main">Pyrolusite</span> Manganese dioxide mineral

Pyrolusite is a mineral consisting essentially of manganese dioxide (MnO2) and is important as an ore of manganese. It is a black, amorphous appearing mineral, often with a granular, fibrous, or columnar structure, sometimes forming reniform crusts. It has a metallic luster, a black or bluish-black streak, and readily soils the fingers. The specific gravity is about 4.8. Its name is from the Greek for fire and to wash, in reference to its use as a way to remove tints from glass.

<span class="mw-page-title-main">Cupellation</span> Refining process in metallurgy

Cupellation is a refining process in metallurgy in which ores or alloyed metals are treated under very high temperatures and subjected to controlled operations to separate noble metals, like gold and silver, from base metals, like lead, copper, zinc, arsenic, antimony, or bismuth, present in the ore. The process is based on the principle that precious metals typically oxidise or react chemically at much higher temperatures than base metals. When they are heated at high temperatures, the precious metals remain apart, and the others react, forming slags or other compounds.

<span class="mw-page-title-main">Dumortierite</span> Aluminum boro-silicate mineral

Dumortierite is a fibrous variably colored aluminium boro-silicate mineral, Al7BO3(SiO4)3O3. Dumortierite crystallizes in the orthorhombic system typically forming fibrous aggregates of slender prismatic crystals. The crystals are vitreous and vary in color from brown, blue, and green to more rare violet and pink. Substitution of iron and other tri-valent elements for aluminium result in the color variations. It has a Mohs hardness of 7 and a specific gravity of 3.3 to 3.4. Crystals show pleochroism from red to blue to violet. Dumortierite quartz is blue colored quartz containing abundant dumortierite inclusions.

<span class="mw-page-title-main">Allophane</span> Silicate clay mineraloid

Allophane is an amorphous to poorly crystalline hydrous aluminium silicate clay mineraloid. Its chemical formula is Al2O3·(SiO2)1.3-2·(2.5-3)H2O. Since it has short-range atomic order, it is a mineraloid, rather than a mineral, and can be identified by its distinctive infrared spectrum and its X-ray diffraction pattern. It was first described in 1816 in Gräfenthal, Thuringia, Germany. Allophane is a weathering or hydrothermal alteration product of volcanic glass and feldspars and sometimes has a composition similar to kaolinite but generally has a molar ratio of Al:Si = 2. It typically forms under mildly acidic to neutral pH (5–7). Its structure has been debated, but it is similar to clay minerals and is composed of curved alumina octahedral and silica tetrahedral layers. Transmission electron micrographs show that it is generally made up of aggregates of hollow spherules ~3–5 nm in diameter. Allophane can alter to form halloysite under resilicating aqueous conditions and can alter to form gibbsite under desilicating conditions. A copper-containing variety cupro-allophane has been reported.

<span class="mw-page-title-main">Apophyllite</span> Phyllosilicate mineral

The name apophyllite refers to a specific group of phyllosilicates, a class of minerals. Originally, the group name referred to a specific mineral, but was redefined in 1978 to stand for a class of minerals of similar chemical makeup that comprise a solid solution series, and includes the members fluorapophyllite-(K), fluorapophyllite-(Na), hydroxyapophyllite-(K). The name apophyllite is derived from the Greek apophyllízo, meaning 'it flakes off', a reference to this class's tendency to flake apart when heated, due to water loss. Exfoliation of apophyllite is also possible by treating it with acids or simply by rubbing it. These minerals are typically found as secondary minerals in vesicles in basalt or other volcanic rocks. A recent change (2008) in the nomenclature system used for this group was approved by the International Mineralogical Association, removing the prefixes from the species names and using suffixes to designate the species. A subsequent nomenclature change approved by the International Mineralogical Association in 2013 renamed the minerals to include both suffixes and prefixes, as shown above.

<span class="mw-page-title-main">Boulangerite</span> Sulfosalt mineral: lead antimony sulfide

Boulangerite or antimonbleiblende is an uncommon monoclinic orthorhombic sulfosalt mineral, lead antimony sulfide, formula Pb5Sb4S11. It was named in 1837 in honor of French mining engineer Charles Boulanger (1810–1849), and had been a valid species since pre-IMA. It was first described prior to 1959, and is now grandfathered.

<span class="mw-page-title-main">Pigeonite</span>

Pigeonite is a mineral in the clinopyroxene subgroup of the pyroxene group. It has a general formula of (Ca,Mg,Fe)(Mg,Fe)Si2O6. The calcium cation fraction can vary from 5% to 25%, with iron and magnesium making up the rest of the cations.

Rhomboclase is an acidic iron sulfate mineral with a formula reported as H5Fe3+O2(SO4)2·2(H2O) or HFe(SO4)2·4(H2O). It crystallizes in the orthorhombic system and typically occurs as tabular crystals with a rhombic outline. It occurs as transparent colorless, blue, green, yellow or grey crystals with a vitreous to pearly luster.

<span class="mw-page-title-main">Spurrite</span> Nesosilicate mineral

Spurrite is a white, yellow or light blue mineral with monoclinic crystals. Its chemical formula is Ca5(SiO4)2CO3.

<span class="mw-page-title-main">NĂ©pouite</span> Nickel ore from the serpentine family (phyllosilicate)

Népouite is a rare nickel silicate mineral which has the apple green color typical of such compounds. It was named by the French mining engineer Edouard Glasser in 1907 after the place where it was first described, the Népoui Mine, Népoui, Poya Commune, North Province, New Caledonia. The ideal formula is Ni3(Si2O5)(OH)4, but most specimens contain some magnesium, and (Ni,Mg)3(Si2O5)(OH)4 is more realistic. There is a similar mineral called lizardite in which all of the nickel is replaced by magnesium, formula Mg3(Si2O5)(OH)4. These two minerals form a series; intermediate compositions are possible, with varying proportions of nickel to magnesium.

<span class="mw-page-title-main">Sinoite</span>

Sinoite is a rare mineral with the chemical formula Si2N2O. It was first found in 1905 in chondrite meteorites and identified as a distinct mineral in 1965. Sinoite crystallizes upon meteorite impact as grains smaller than 0.2 mm surrounded by Fe-Ni alloys and the mineral enstatite. It is named after its SiNO composition and can be prepared in the laboratory as a silicon oxynitride ceramic.

<span class="mw-page-title-main">Millerite</span> Nickel sulfide mineral

Millerite or nickel blende is a nickel sulfide mineral, NiS. It is brassy in colour and has an acicular habit, often forming radiating masses and furry aggregates. It can be distinguished from pentlandite by crystal habit, its duller colour, and general lack of association with pyrite or pyrrhotite.