Multispecies Coalescent Process is a stochastic process model that describes the genealogical relationships for a sample of DNA sequences taken from several species. [1] [2] It represents the application of coalescent theory to the case of multiple species. The multispecies coalescent results in cases where the relationships among species for an individual gene (the gene tree) can differ from the broader history of the species (the species tree). It has important implications for the theory and practice of phylogenetics [3] [4] and for understanding genome evolution.
A gene tree is a binary graph that describes the evolutionary relationships between a sample of sequences for a non-recombining locus. A species tree describes the evolutionary relationships between a set of species, assuming tree-like evolution. However, several processes can lead to discordance between gene trees and species trees. The Multispecies Coalescent model provides a framework for inferring species phylogenies while accounting for ancestral polymorphism and gene tree-species tree conflict. The process is also called the Censored Coalescent. [1]
Besides species tree estimation, the multispecies coalescent model also provides a framework for using genomic data to address a number of biological problems, such as estimation of species divergence times, population sizes of ancestral species, species delimitation, and inference of cross-species gene flow. [5] [6]
If we consider a rooted three-taxon tree, the simplest non-trivial phylogenetic tree, there are three different tree topologies [7] but four possible gene trees. [8] The existence of four distinct gene trees despite the smaller number of topologies reflects the fact that there are topologically identical gene tree that differ in their coalescent times. In the type 1 tree the alleles in species A and B coalesce after the speciation event that separated the A-B lineage from the C lineage. In the type 2 tree the alleles in species A and B coalesce before the speciation event that separated the A-B lineage from the C lineage (in other words, the type 2 tree is a deep coalescence tree). The type 1 and type 2 gene trees are both congruent with the species tree. The other two gene trees differ from the species tree; the two discordant gene trees are also deep coalescence trees.
The distribution of times to coalescence is actually continuous for all of these trees. In other words, the exact coalescent time for any two loci with the same gene tree may differ. However, it is convenient to break up the trees based on whether the coalescence occurred before or after the earliest speciation event.
Given the internal branch length in coalescent units it is straightforward to calculate the probability of each gene tree. [9] For diploid organisms the branch length in coalescent units is the number of generations between the speciation events divided by twice the effective population size. Since all three of the deep coalescence tree are equiprobable and two of those deep coalescence tree are discordant it is easy to see that the probability that a rooted three-taxon gene tree will be congruent with the species tree is:
Where the branch length in coalescent units (T) is also written in an alternative form: the number of generations (t) divided by twice the effective population size (Ne). Pamilo and Nei [9] also derived the probability of congruence for rooted trees of four and five taxa as well as a general upper bound on the probability of congruence for larger trees. Rosenberg [10] followed up with equations used for the complete set of topologies (although the large number of distinct phylogenetic trees that becomes possible as the number of taxa increases [7] makes these equations impractical unless the number of taxa is very limited).
The phenomenon of hemiplasy is a natural extension of the basic idea underlying gene tree-species tree discordance. If we consider the distribution of some character that disagrees with the species tree it might reflect homoplasy (multiple independent origins of the character or a single origin followed by multiple losses) or it could reflect hemiplasy (a single origin of the trait that is associated with a gene tree that disagrees with the species tree).
The phenomenon called incomplete lineage sorting (often abbreviated ILS in the scientific literatures [11] ) is linked to the phenomenon. If we examine the illustration of hemiplasy with using a rooted four-taxon tree (see image to the right) the lineage between the common ancestor of taxa A, B, and C and the common ancestor of taxa A and B must be polymorphic for the allele with the derived trait (e.g., a transposable element insertion [12] ) and the allele with the ancestral trait. The concept of incomplete lineage sorting ultimately reflects on persistence of polymorphisms across one or more speciation events.
The probability density of the gene trees under the multispecies coalescent model is discussed along with its use for parameter estimation using multi-locus sequence data.
In the basic multispecies coalescent model, the species phylogeny is assumed to be known. Complete isolation after species divergence, with no migration, hybridization, or introgression is also assumed. We assume no recombination so that all the sites within the locus share the same gene tree (topology and coalescent times). However, the basic model can be extended in different ways to accommodate migration or introgression, population size changes, recombination. [13] [14]
The model and implementation of this method can be applied to any species tree. As an example, the species tree of the great apes: humans (H), chimpanzees (C), gorillas (G) and orangutans (O) is considered. The topology of the species tree, (((HC)G)O)), is assumed known and fixed in the analysis (Figure 1). [1] Let be the entire data set, where represent the sequence alignment at locus , with for a total of loci.
The population size of a current species is considered only if more than one individual is sampled from that species at some loci.
The parameters in the model for the example of Figure 1 include the three divergence times , and and population size parameters for humans; for chimpanzees; and , and for the three ancestral species.
The divergence times ('s) are measured by the expected number of mutations per site from the ancestral node in the species tree to the present time (Figure 1 of Rannala and Yang, 2003).
Therefore, the parameters are .
The joint distribution of is derived directly in this section. [1] Two sequences from different species can coalesce only in one populations that are ancestral to the two species. For example, sequences H and G can coalesce in populations HCG or HCGO, but not in populations H or HC. The coalescent processes in different populations are different.
For each population, the genealogy is traced backward in time, until the end of the population at time , and the number of lineages entering the population and the number of lineages leaving it are recorded. For example, and , for population H (Table 1). [1] This process is called a censored coalescent process because the coalescent process for one population may be terminated before all lineages that entered the population have coalesced. If the population consists of disconnected subtrees or lineages.
With one time unit defined as the time taken to accumulate one mutation per site, any two lineages coalesce at the rate . The waiting time until the next coalescent event, which reduces the number of lineages from to has exponential density
If , the probability that no coalescent event occurs between the last one and the end of the population at time ; i.e. during the time interval . This probability is and is 1 if .
(Note: One should recall that the probability of no events over time interval for a Poisson process with rate is . Here the coalescent rate when there are lineages is .)
In addition, to derive the probability of a particular gene tree topology in the population, if a coalescent event occurs in a sample of lineages, the probability that a particular pair of lineages coalesce is .
Multiplying these probabilities together, the joint probability distribution of the gene tree topology in the population and its coalescent times as
The probability of the gene tree and coalescent times for the locus is the product of such probabilities across all the populations. Therefore, the gene genealogy of Figure 1, [1] [15] we have
The gene genealogy at each locus is represented by the tree topology and the coalescent times . Given the species tree and the parameters on it, the probability distribution of is specified by the coalescent process as
where is the probability density for the gene tree at locus locus , [1] and the product is because we assume that the gene trees are independent given the parameters.
The probability of data given the gene tree and coalescent times (and thus branch lengths) at the locus, , is Felsenstein's phylogenetic likelihood. [16] Due to the assumption of independent evolution across the loci,
The likelihood function or the probability of the sequence data given the parameters is then an average over the unobserved gene trees
where the integration represents summation over all possible gene tree topologies () and, for each possible topology at each locus, integration over the coalescent times . [17] This is in general intractable except for very small species trees.
In Bayesian inference, we assign a prior on the parameters, , and then the posterior is given as
where again the integration represents summation over all possible gene tree topologies () and integration over the coalescent times . In practice this integration over the gene trees is achieved through a Markov chain Monte Carlo algorithm, which samples from the joint conditional distribution of the parameters and the gene trees
The above assumes that the species tree is fixed. In species-tree estimation, the species tree () changes as well, so that the joint conditional distribution (from which the MCMC samples) is
where is the prior on species trees.
As a major departure from two-step summary methods, full-likelihood methods average over the gene trees. This means that they make use of information in the branch lengths (coalescent times) on the gene trees and accommodate their uncertainties (due to limited sequence length in the alignments) at the same time. It also explains why full-likelihood methods are computationally much more demanding than two-step summary methods.
The integration or summation over the gene trees in the definition of the likelihood function above is virtually impossible to compute except for very small species trees with only two or three species. [18] Full-likelihood or full-data methods, based on calculation of the likelihood function on sequence alignments, have thus mostly relied on Markov chain Monte Carlo algorithms. MCMC algorithms under the multispecies coalescent model are similar to those used in Bayesian phylogenetics but are distinctly more complex, mainly due to the fact that the gene trees at multiple loci and the species tree have to be compatible: sequence divergence has to be older than species divergence. As a result, changing the species tree while the gene trees are fixed (or changing a gene tree while the species tree is fixed) leads to inefficient algorithms with poor mixing properties. Considerable efforts have been taken to design smart algorithms that change the species tree and gene trees in a coordinated manner, as in the rubber-band algorithm for changing species divergence times, [1] the coordinated NNI, SPR and NodeSlider moves. [19] [20]
Consider for example the case of two species (A and B) and two sequences at each locus, with a sequence divergence time at locus . We have for all . When we want to change the species divergence time within the constraint of the current , we may have very little room for change, as may be virtually identical to the smallest of the . The rubber-band algorithm [1] changes without consideration of the , and then modifies the deterministically in the same way that marks on a rubber band move when the rubber band is held from a fixed point pulled towards one end. In general, the rubber-band move guarantees that the ages of nodes in the gene trees are modified so that they remain compatible with the modified species divergence time.
Full likelihood methods tend to reach their limit when the data consist of a few hundred loci, even though more than 10,000 loci have been analyzed in a few published studies. [21] [22]
The basic multispecies coalescent model can be extended in a number of ways to accommodate major factors of the biological process of reproduction and drift. [13] [14] For example, incorporating continuous-time migration leads to the MSC+M (for MSC with migration) model, also known as the isolation-with-migration or IM models. [23] [24] Incorporating episodic hybridization/introgression leads to the MSC with introgression (MSci) [25] or multispecies-network-coalescent (MSNC) model. [26] [27]
The multispecies coalescent has profound implications for the theory and practice of molecular phylogenetics. [3] [4] Since individual gene trees can differ from the species tree one cannot estimate the tree for a single locus and assume that the gene tree correspond the species tree. In fact, one can be virtually certain that any individual gene tree will differ from the species tree for at least some relationships when any reasonable number of taxa are considered. However, gene tree-species tree discordance has an impact on the theory and practice of species tree estimation that goes beyond the simple observation that one cannot use a single gene tree to estimate the species tree because there is a part of parameter space where the most frequent gene tree is incongruent with the species tree. This part of parameter space is called the anomaly zone [28] and any discordant gene trees that are more expected to arise more often than the gene tree. that matches the species tree are called anomalous gene trees.
The existence of the anomaly zone implies that one cannot simply estimate a large number of gene trees and assume the gene tree recovered the largest number of times is the species tree. Of course, estimating the species tree by a "democratic vote" of gene trees would only work for a limited number of taxa outside of the anomaly zone given the extremely large number of phylogenetic trees that are possible. [7] However, the existence of the anomalous gene trees also means that simple methods for combining gene trees, like the majority rule extended ("greedy") consensus method or the matrix representation with parsimony (MRP) supertree [29] [30] approach, will not be consistent estimators of the species tree [31] [32] (i.e., they will be misleading). Simply generating the majority-rule consensus tree for the gene trees, where groups that are present in at least 50% of gene trees are retained, will not be misleading as long as a sufficient number of gene trees are used. [31] However, this ability of the majority-rule consensus tree for a set of gene trees to avoid incorrect clades comes at the cost of having unresolved groups.
Simulations have shown that there are parts of species tree parameter space where maximum likelihood estimates of phylogeny are incorrect trees with increasing probability as the amount of data analyzed increases. [33] This is important because the "concatenation approach," where multiple sequence alignments from different loci are concatenated to form a single large supermatrix alignment that is then used for maximum likelihood (or Bayesian MCMC) analysis, is both easy to implement and commonly used in empirical studies. This represents a case of model misspecification because the concatenation approach implicitly assumes that all gene trees have the same topology. [34] Indeed, it has now been proven that analyses of data generated under the multispecies coalescent using maximum likelihood analysis of a concatenated data are not guaranteed to converge on the true species tree as the number of loci used for the analysis increases [35] [36] [37] (i.e., maximum likelihood concatenation is statistically inconsistent).
There are two basic approaches for phylogenetic estimation in the multispecies coalescent framework: 1) full-likelihood or full-data methods which operate on multilocus sequence alignments directly, including both maximum likelihood and Bayesian methods, and 2) summary methods, which use a summary of the original sequence data, including the two-step methods that use estimated gene trees as summary input and SVDQuartets, which use site pattern counts pooled over loci as summary input.
Program | Description | Method | References |
---|---|---|---|
ASTRAL | ASTRAL (Accurate Species TRee ALgorithm) summarizes a set of gene trees using a quartet method generate an estimate of the species tree with coalescent branch lengths and support values (local posterior probabilities [38] ) | Summary | Mirarab et al. (2014); [39] Zhang et al. (2018) [40] |
ASTRID | ASTRID (Accurate Species TRees from Internode Distances) is an extension of the NJst method. [41] ASTRID/NJst is a summary species tree method that calculates the internode distances from a set of input gene trees. A distance method like neighbor joining or minimum evolution is then used to estimate the species tree from those distances. Note that ASTRID/NJst is not consistent under a model of missing data [42] | Summary | Vachaspati and Warnow (2015) [43] |
BPP | Bayesian MCMC software package for inferring phylogeny and divergence times among populations under the multispecies coalescent process; also includes method for species delimitation | Full likelihood | Yang et al. (2015); [44] Flouri et al. (2018) [45] |
STACEY | Bayesian MCMC software package for inferring phylogeny and divergence times among populations under the multispecies coalescent process; minimal clusters (samples assumed to belong to the same species according to the model) are sampled during the MCMC without the need to change parameters space | Full likelihood | Jones et al. (2015); [46] Jones GR (2018) [47] |
*BEAST | Bayesian MCMC software package for inferring phylogeny and divergence times among populations under the multispecies coalescent process. Implemented as part of the BEAST software package (pronounced Star BEAST) | Full likelihood | Heled and Drummond (2010) [48] |
MP-EST | Accepts a set of gene trees as input and generates the maximum pseudolikelihood estimate of the species tree | Summary | Liu et al. (2010) [49] |
SVDquartets (implemented in PAUP*) | PAUP* is a general phylogenetic estimation package that implements many methods. SVDquartets is a method that has shown to be statistically consistent for data generated given the multispecies coalescent | Summary/Site-pattern method | Chifman and Kubatko (2014) [50] |
The likelihood function is the joint probability mass of observed data viewed as a function of the parameters of a statistical model. Intuitively, the likelihood function is the probability of observing data assuming is the actual parameter.
In statistics, the likelihood-ratio test assesses the goodness of fit of two competing statistical models, specifically one found by maximization over the entire parameter space and another found after imposing some constraint, based on the ratio of their likelihoods. If the constraint is supported by the observed data, the two likelihoods should not differ by more than sampling error. Thus the likelihood-ratio test tests whether this ratio is significantly different from one, or equivalently whether its natural logarithm is significantly different from zero.
In statistics, maximum likelihood estimation (MLE) is a method of estimating the parameters of an assumed probability distribution, given some observed data. This is achieved by maximizing a likelihood function so that, under the assumed statistical model, the observed data is most probable. The point in the parameter space that maximizes the likelihood function is called the maximum likelihood estimate. The logic of maximum likelihood is both intuitive and flexible, and as such the method has become a dominant means of statistical inference.
In statistics, a statistic is sufficient with respect to a statistical model and its associated unknown parameter if "no other statistic that can be calculated from the same sample provides any additional information as to the value of the parameter". In particular, a statistic is sufficient for a family of probability distributions if the sample from which it is calculated gives no additional information than the statistic, as to which of those probability distributions is the sampling distribution.
In probability and statistics, an exponential family is a parametric set of probability distributions of a certain form, specified below. This special form is chosen for mathematical convenience, including the enabling of the user to calculate expectations, covariances using differentiation based on some useful algebraic properties, as well as for generality, as exponential families are in a sense very natural sets of distributions to consider. The term exponential class is sometimes used in place of "exponential family", or the older term Koopman–Darmois family. Sometimes loosely referred to as "the" exponential family, this class of distributions is distinct because they all possess a variety of desirable properties, most importantly the existence of a sufficient statistic.
In mathematics, theta functions are special functions of several complex variables. They show up in many topics, including Abelian varieties, moduli spaces, quadratic forms, and solitons. As Grassmann algebras, they appear in quantum field theory.
In statistics, an expectation–maximization (EM) algorithm is an iterative method to find (local) maximum likelihood or maximum a posteriori (MAP) estimates of parameters in statistical models, where the model depends on unobserved latent variables. The EM iteration alternates between performing an expectation (E) step, which creates a function for the expectation of the log-likelihood evaluated using the current estimate for the parameters, and a maximization (M) step, which computes parameters maximizing the expected log-likelihood found on the E step. These parameter-estimates are then used to determine the distribution of the latent variables in the next E step. It can be used, for example, to estimate a mixture of gaussians, or to solve the multiple linear regression problem.
The unified neutral theory of biodiversity and biogeography is a theory and the title of a monograph by ecologist Stephen P. Hubbell. It aims to explain the diversity and relative abundance of species in ecological communities. Like other neutral theories of ecology, Hubbell assumes that the differences between members of an ecological community of trophically similar species are "neutral", or irrelevant to their success. This implies that niche differences do not influence abundance and the abundance of each species follows a random walk. The theory has sparked controversy, and some authors consider it a more complex version of other null models that fit the data better.
In statistics, a generalized linear model (GLM) is a flexible generalization of ordinary linear regression. The GLM generalizes linear regression by allowing the linear model to be related to the response variable via a link function and by allowing the magnitude of the variance of each measurement to be a function of its predicted value.
In nuclear physics, the chiral model, introduced by Feza Gürsey in 1960, is a phenomenological model describing effective interactions of mesons in the chiral limit (where the masses of the quarks go to zero), but without necessarily mentioning quarks at all. It is a nonlinear sigma model with the principal homogeneous space of a Lie group as its target manifold. When the model was originally introduced, this Lie group was the SU(N), where N is the number of quark flavors. The Riemannian metric of the target manifold is given by a positive constant multiplied by the Killing form acting upon the Maurer–Cartan form of SU(N).
In mathematics, a symplectic integrator (SI) is a numerical integration scheme for Hamiltonian systems. Symplectic integrators form the subclass of geometric integrators which, by definition, are canonical transformations. They are widely used in nonlinear dynamics, molecular dynamics, discrete element methods, accelerator physics, plasma physics, quantum physics, and celestial mechanics.
Coalescent theory is a model of how alleles sampled from a population may have originated from a common ancestor. In the simplest case, coalescent theory assumes no recombination, no natural selection, and no gene flow or population structure, meaning that each variant is equally likely to have been passed from one generation to the next. The model looks backward in time, merging alleles into a single ancestral copy according to a random process in coalescence events. Under this model, the expected time between successive coalescence events increases almost exponentially back in time. Variance in the model comes from both the random passing of alleles from one generation to the next, and the random occurrence of mutations in these alleles.
In mathematics, the theta representation is a particular representation of the Heisenberg group of quantum mechanics. It gains its name from the fact that the Jacobi theta function is invariant under the action of a discrete subgroup of the Heisenberg group. The representation was popularized by David Mumford.
Bayesian inference of phylogeny combines the information in the prior and in the data likelihood to create the so-called posterior probability of trees, which is the probability that the tree is correct given the data, the prior and the likelihood model. Bayesian inference was introduced into molecular phylogenetics in the 1990s by three independent groups: Bruce Rannala and Ziheng Yang in Berkeley, Bob Mau in Madison, and Shuying Li in University of Iowa, the last two being PhD students at the time. The approach has become very popular since the release of the MrBayes software in 2001, and is now one of the most popular methods in molecular phylogenetics.
Rotational diffusion is the rotational movement which acts upon any object such as particles, molecules, atoms when present in a fluid, by random changes in their orientations. Whilst the directions and intensities of these changes are statistically random, they do not arise randomly and are instead the result of interactions between particles. One example occurs in colloids, where relatively large insoluble particles are suspended in a greater amount of fluid. The changes in orientation occur from collisions between the particle and the many molecules forming the fluid surrounding the particle, which each transfer kinetic energy to the particle, and as such can be considered random due to the varied speeds and amounts of fluid molecules incident on each individual particle at any given time.
Biological neuron models, also known as spiking neuron models, are mathematical descriptions of the conduction of electrical signals in neurons. Neurons are electrically excitable cells within the nervous system, able to fire electric signals, called action potentials, across a neural network. These mathematical models describe the role of the biophysical and geometrical characteristics of neurons on the conduction of electrical activity.
In probability and statistics, the Tweedie distributions are a family of probability distributions which include the purely continuous normal, gamma and inverse Gaussian distributions, the purely discrete scaled Poisson distribution, and the class of compound Poisson–gamma distributions which have positive mass at zero, but are otherwise continuous. Tweedie distributions are a special case of exponential dispersion models and are often used as distributions for generalized linear models.
In probability and statistics, a compound probability distribution is the probability distribution that results from assuming that a random variable is distributed according to some parametrized distribution, with the parameters of that distribution themselves being random variables. If the parameter is a scale parameter, the resulting mixture is also called a scale mixture.
Exponential Random Graph Models (ERGMs) are a family of statistical models for analyzing data from social and other networks. Examples of networks examined using ERGM include knowledge networks, organizational networks, colleague networks, social media networks, networks of scientific development, and others.
Exponential Tilting (ET), Exponential Twisting, or Exponential Change of Measure (ECM) is a distribution shifting technique used in many parts of mathematics. The different exponential tiltings of a random variable is known as the natural exponential family of .