Multisymplectic integrator

Last updated

In mathematics, a multisymplectic integrator is a numerical method for the solution of a certain class of partial differential equations, that are said to be multisymplectic. Multisymplectic integrators are geometric integrators, meaning that they preserve the geometry of the problems; in particular, the numerical method preserves energy and momentum in some sense, similar to the partial differential equation itself. Examples of multisymplectic integrators include the Euler box scheme and the Preissman box scheme.

Contents

Multisymplectic equations

A partial differential equation (PDE) is said to be a multisymplectic equation if it can be written in the form

where is the unknown, and are (constant) skew-symmetric matrices and denotes the gradient of . [1] This is a natural generalization of , the form of a Hamiltonian ODE. [2]

Examples of multisymplectic PDEs include the nonlinear Klein–Gordon equation , or more generally the nonlinear wave equation , [3] and the KdV equation . [4]

Define the 2-forms and by

where denotes the dot product. The differential equation preserves symplecticity in the sense that

[5]

Taking the dot product of the PDE with yields the local conservation law for energy:

[6]

The local conservation law for momentum is derived similarly:

[6]

The Euler box scheme

A multisymplectic integrator is a numerical method for solving multisymplectic PDEs whose numerical solution conserves a discrete form of symplecticity. [7] One example is the Euler box scheme, which is derived by applying the symplectic Euler method to each independent variable. [8]

The Euler box scheme uses a splitting of the skewsymmetric matrices and of the form:

For instance, one can take and to be the upper triangular part of and , respectively. [9]

Now introduce a uniform grid and let denote the approximation to where and are the grid spacing in the time- and space-direction. Then the Euler box scheme is

where the finite difference operators are defined by

[10]

The Euler box scheme is a first-order method, [8] which satisfies the discrete conservation law

[11]

Preissman box scheme

Another multisymplectic integrator is the Preissman box scheme, which was introduced by Preissman in the context of hyperbolic PDEs. [12] It is also known as the centred cell scheme. [13] The Preissman box scheme can be derived by applying the Implicit midpoint rule, which is a symplectic integrator, to each of the independent variables. [14] This leads to the scheme

where the finite difference operators and are defined as above and the values at the half-integers are defined by

[14]

The Preissman box scheme is a second-order multisymplectic integrator which satisfies the discrete conservation law

[15]

Notes

  1. Bridges 1997, p. 1374; Leimkuhler & Reich 2004, p. 335–336.
  2. Bridges & Reich 2001, p. 186.
  3. Leimkuhler & Reich 2004, p. 335.
  4. Leimkuhler & Reich 2004, p. 339–340.
  5. Bridges & Reich 2001, p. 186; Leimkuhler & Reich 2004, p. 336.
  6. 1 2 Bridges & Reich 2001, p. 187; Leimkuhler & Reich 2004, p. 337–338.
  7. Bridges & Reich 2001 , p. 187; Leimkuhler & Reich 2004 , p. 341.
  8. 1 2 Moore & Reich 2003.
  9. Moore & Reich 2003; Leimkuhler & Reich 2004 , p. 337.
  10. Moore & Reich 2003; Leimkuhler & Reich 2004 , p. 342.
  11. Moore & Reich 2003; Leimkuhler & Reich 2004 , p. 343.
  12. Bridges & Reich (2001 , p. 190) refers to Abbott & Basco (1989) for the work by Preissman.
  13. Islas & Schober 2004 , pp. 591–593.
  14. 1 2 Bridges & Reich 2001 , p. 190; Leimkuhler & Reich 2004 , p. 344.
  15. Bridges & Reich 2001 , Thm 1; Leimkuhler & Reich 2004 , p. 345.

Related Research Articles

In differential geometry, a subject of mathematics, a symplectic manifold is a smooth manifold, , equipped with a closed nondegenerate differential 2-form , called the symplectic form. The study of symplectic manifolds is called symplectic geometry or symplectic topology. Symplectic manifolds arise naturally in abstract formulations of classical mechanics and analytical mechanics as the cotangent bundles of manifolds. For example, in the Hamiltonian formulation of classical mechanics, which provides one of the major motivations for the field, the set of all possible configurations of a system is modeled as a manifold, and this manifold's cotangent bundle describes the phase space of the system.

<span class="mw-page-title-main">Poisson bracket</span> Operation in Hamiltonian mechanics

In mathematics and classical mechanics, the Poisson bracket is an important binary operation in Hamiltonian mechanics, playing a central role in Hamilton's equations of motion, which govern the time evolution of a Hamiltonian dynamical system. The Poisson bracket also distinguishes a certain class of coordinate transformations, called canonical transformations, which map canonical coordinate systems into canonical coordinate systems. A "canonical coordinate system" consists of canonical position and momentum variables that satisfy canonical Poisson bracket relations. The set of possible canonical transformations is always very rich. For instance, it is often possible to choose the Hamiltonian itself as one of the new canonical momentum coordinates.

In physics, Liouville's theorem, named after the French mathematician Joseph Liouville, is a key theorem in classical statistical and Hamiltonian mechanics. It asserts that the phase-space distribution function is constant along the trajectories of the system—that is that the density of system points in the vicinity of a given system point traveling through phase-space is constant with time. This time-independent density is in statistical mechanics known as the classical a priori probability.

In physics, the Hamilton–Jacobi equation, named after William Rowan Hamilton and Carl Gustav Jacob Jacobi, is an alternative formulation of classical mechanics, equivalent to other formulations such as Newton's laws of motion, Lagrangian mechanics and Hamiltonian mechanics.

<span class="mw-page-title-main">Nonlinear Schrödinger equation</span> Nonlinear form of the Schrödinger equation

In theoretical physics, the (one-dimensional) nonlinear Schrödinger equation (NLSE) is a nonlinear variation of the Schrödinger equation. It is a classical field equation whose principal applications are to the propagation of light in nonlinear optical fibers and planar waveguides and to Bose–Einstein condensates confined to highly anisotropic, cigar-shaped traps, in the mean-field regime. Additionally, the equation appears in the studies of small-amplitude gravity waves on the surface of deep inviscid (zero-viscosity) water; the Langmuir waves in hot plasmas; the propagation of plane-diffracted wave beams in the focusing regions of the ionosphere; the propagation of Davydov's alpha-helix solitons, which are responsible for energy transport along molecular chains; and many others. More generally, the NLSE appears as one of universal equations that describe the evolution of slowly varying packets of quasi-monochromatic waves in weakly nonlinear media that have dispersion. Unlike the linear Schrödinger equation, the NLSE never describes the time evolution of a quantum state. The 1D NLSE is an example of an integrable model.

In fluid dynamics, Couette flow is the flow of a viscous fluid in the space between two surfaces, one of which is moving tangentially relative to the other. The relative motion of the surfaces imposes a shear stress on the fluid and induces flow. Depending on the definition of the term, there may also be an applied pressure gradient in the flow direction.

<span class="mw-page-title-main">Euler–Bernoulli beam theory</span> Method for load calculation in construction

Euler–Bernoulli beam theory is a simplification of the linear theory of elasticity which provides a means of calculating the load-carrying and deflection characteristics of beams. It covers the case corresponding to small deflections of a beam that is subjected to lateral loads only. By ignoring the effects of shear deformation and rotatory inertia, it is thus a special case of Timoshenko–Ehrenfest beam theory. It was first enunciated circa 1750, but was not applied on a large scale until the development of the Eiffel Tower and the Ferris wheel in the late 19th century. Following these successful demonstrations, it quickly became a cornerstone of engineering and an enabler of the Second Industrial Revolution.

In physics, the Majorana equation is a relativistic wave equation. It is named after the Italian physicist Ettore Majorana, who proposed it in 1937 as a means of describing fermions that are their own antiparticle. Particles corresponding to this equation are termed Majorana particles, although that term now has a more expansive meaning, referring to any fermionic particle that is its own anti-particle.

In mathematics, a locally integrable function is a function which is integrable on every compact subset of its domain of definition. The importance of such functions lies in the fact that their function space is similar to Lp spaces, but its members are not required to satisfy any growth restriction on their behavior at the boundary of their domain : in other words, locally integrable functions can grow arbitrarily fast at the domain boundary, but are still manageable in a way similar to ordinary integrable functions.

The Rabi problem concerns the response of an atom to an applied harmonic electric field, with an applied frequency very close to the atom's natural frequency. It provides a simple and generally solvable example of light–atom interactions and is named after Isidor Isaac Rabi.

In the study of partial differential equations, the MUSCL scheme is a finite volume method that can provide highly accurate numerical solutions for a given system, even in cases where the solutions exhibit shocks, discontinuities, or large gradients. MUSCL stands for Monotonic Upstream-centered Scheme for Conservation Laws, and the term was introduced in a seminal paper by Bram van Leer. In this paper he constructed the first high-order, total variation diminishing (TVD) scheme where he obtained second order spatial accuracy.

In the differential geometry of surfaces, a Darboux frame is a natural moving frame constructed on a surface. It is the analog of the Frenet–Serret frame as applied to surface geometry. A Darboux frame exists at any non-umbilic point of a surface embedded in Euclidean space. It is named after French mathematician Jean Gaston Darboux.

In applied mathematics, discontinuous Galerkin methods (DG methods) form a class of numerical methods for solving differential equations. They combine features of the finite element and the finite volume framework and have been successfully applied to hyperbolic, elliptic, parabolic and mixed form problems arising from a wide range of applications. DG methods have in particular received considerable interest for problems with a dominant first-order part, e.g. in electrodynamics, fluid mechanics and plasma physics. Indeed, the solutions of such problems may involve strong gradients (and even discontinuities) so that classical finite element methods fail, while finite volume methods are restricted to low order approximations.

Acoustic streaming is a steady flow in a fluid driven by the absorption of high amplitude acoustic oscillations. This phenomenon can be observed near sound emitters, or in the standing waves within a Kundt's tube. Acoustic streaming was explained first by Lord Rayleigh in 1884. It is the less-known opposite of sound generation by a flow.

<span class="mw-page-title-main">Mild-slope equation</span> Physics phenomenon and formula

In fluid dynamics, the mild-slope equation describes the combined effects of diffraction and refraction for water waves propagating over bathymetry and due to lateral boundaries—like breakwaters and coastlines. It is an approximate model, deriving its name from being originally developed for wave propagation over mild slopes of the sea floor. The mild-slope equation is often used in coastal engineering to compute the wave-field changes near harbours and coasts.

Heat transfer physics describes the kinetics of energy storage, transport, and energy transformation by principal energy carriers: phonons, electrons, fluid particles, and photons. Heat is thermal energy stored in temperature-dependent motion of particles including electrons, atomic nuclei, individual atoms, and molecules. Heat is transferred to and from matter by the principal energy carriers. The state of energy stored within matter, or transported by the carriers, is described by a combination of classical and quantum statistical mechanics. The energy is different made (converted) among various carriers. The heat transfer processes are governed by the rates at which various related physical phenomena occur, such as the rate of particle collisions in classical mechanics. These various states and kinetics determine the heat transfer, i.e., the net rate of energy storage or transport. Governing these process from the atomic level to macroscale are the laws of thermodynamics, including conservation of energy.

The Leray projection, named after Jean Leray, is a linear operator used in the theory of partial differential equations, specifically in the fields of fluid dynamics. Informally, it can be seen as the projection on the divergence-free vector fields. It is used in particular to eliminate both the pressure term and the divergence-free term in the Stokes equations and Navier–Stokes equations.

In astrophysics, the Chandrasekhar virial equations are a hierarchy of moment equations of the Euler equations, developed by the Indian American astrophysicist Subrahmanyan Chandrasekhar, and the physicist Enrico Fermi and Norman R. Lebovitz.

In mathematics, the limiting absorption principle (LAP) is a concept from operator theory and scattering theory that consists of choosing the "correct" resolvent of a linear operator at the essential spectrum based on the behavior of the resolvent near the essential spectrum. The term is often used to indicate that the resolvent, when considered not in the original space (which is usually the space), but in certain weighted spaces (usually , see below), has a limit as the spectral parameter approaches the essential spectrum. This concept developed from the idea of introducing complex parameter into the Helmholtz equation for selecting a particular solution. This idea is credited to Vladimir Ignatowski, who was considering the propagation and absorption of the electromagnetic waves in a wire. It is closely related to the Sommerfeld radiation condition and the limiting amplitude principle (1948). The terminology – both the limiting absorption principle and the limiting amplitude principle – was introduced by Aleksei Sveshnikov.

In mathematical physics, the Garnier integrable system, also known as the classical Gaudin model is a classical mechanical system discovered by René Garnier in 1919 by taking the 'Painlevé simplification' or 'autonomous limit' of the Schlesinger equations. It is a classical analogue to the quantum Gaudin model due to Michel Gaudin. The classical Gaudin models are integrable.

References