N! conjecture

Last updated

In mathematics, the n! conjecture is the conjecture that the dimension of a certain bi-graded module of diagonal harmonics is n!. It was made by A. M. Garsia and M. Haiman and later proved by M. Haiman. It implies Macdonald's positivity conjecture about the Macdonald polynomials.

Contents

Formulation and background

The Macdonald polynomials are a two-parameter family of orthogonal polynomials indexed by a positive weight λ of a root system, introduced by Ian G. Macdonald (1987). They generalize several other families of orthogonal polynomials, such as Jack polynomials and Hall–Littlewood polynomials. They are known to have deep relationships with affine Hecke algebras and Hilbert schemes, which were used to prove several conjectures made by Macdonald about them.

Macdonald (1988) introduced a new basis for the space of symmetric functions, which specializes to many of the well-known bases for the symmetric functions, by suitable substitutions for the parameters q and t.

In fact, we can obtain in this manner the Schur functions, the Hall–Littlewood symmetric functions, the Jack symmetric functions, the zonal symmetric functions, the zonal spherical functions, and the elementary and monomial symmetric functions.

The so-called q,t-Kostka polynomials are the coefficients of a resulting transition matrix. Macdonald conjectured that they are polynomials in q and t, with non-negative integer coefficients.

It was Adriano Garsia's idea to construct an appropriate module in order to prove positivity (as was done in his previous joint work with Procesi on Schur positivity of Kostka–Foulkes polynomials).

In an attempt to prove Macdonald's conjecture, Garsia & Haiman (1993) introduced the bi-graded module of diagonal harmonics and conjectured that the (modified) Macdonald polynomials are the Frobenius image of the character generating function of Hμ, under the diagonal action of the symmetric group.

The proof of Macdonald's conjecture was then reduced to the n! conjecture; i.e., to prove that the dimension of Hμ is n!. In 2001, Haiman proved that the dimension is indeed n! (see [4]).

This breakthrough led to the discovery of many hidden connections and new aspects of symmetric group representation theory, as well as combinatorial objects (e.g., insertion tableaux, Haglund's inversion numbers, and the role of parking functions in representation theory).

Related Research Articles

In mathematics, particularly linear algebra and functional analysis, a spectral theorem is a result about when a linear operator or matrix can be diagonalized. This is extremely useful because computations involving a diagonalizable matrix can often be reduced to much simpler computations involving the corresponding diagonal matrix. The concept of diagonalization is relatively straightforward for operators on finite-dimensional vector spaces but requires some modification for operators on infinite-dimensional spaces. In general, the spectral theorem identifies a class of linear operators that can be modeled by multiplication operators, which are as simple as one can hope to find. In more abstract language, the spectral theorem is a statement about commutative C*-algebras. See also spectral theory for a historical perspective.

In mathematics, a quadratic form is a polynomial with terms all of degree two. For example,

In the mathematical discipline of linear algebra, a matrix decomposition or matrix factorization is a factorization of a matrix into a product of matrices. There are many different matrix decompositions; each finds use among a particular class of problems.

In algebra and in particular in algebraic combinatorics, the ring of symmetric functions is a specific limit of the rings of symmetric polynomials in n indeterminates, as n goes to infinity. This ring serves as universal structure in which relations between symmetric polynomials can be expressed in a way independent of the number n of indeterminates. Among other things, this ring plays an important role in the representation theory of the symmetric group.

In mathematics, the representation theory of the symmetric group is a particular case of the representation theory of finite groups, for which a concrete and detailed theory can be obtained. This has a large area of potential applications, from symmetric function theory to quantum chemistry studies of atoms, molecules and solids.

In group theory, restriction forms a representation of a subgroup using a known representation of the whole group. Restriction is a fundamental construction in representation theory of groups. Often the restricted representation is simpler to understand. Rules for decomposing the restriction of an irreducible representation into irreducible representations of the subgroup are called branching rules, and have important applications in physics. For example, in case of explicit symmetry breaking, the symmetry group of the problem is reduced from the whole group to one of its subgroups. In quantum mechanics, this reduction in symmetry appears as a splitting of degenerate energy levels into multiplets, as in the Stark or Zeeman effect.

Ian G. Macdonald British mathematician

Ian Grant Macdonald is a British mathematician known for his contributions to symmetric functions, special functions, Lie algebra theory and other aspects of algebra, algebraic combinatorics, and combinatorics.

In mathematics, Schur polynomials, named after Issai Schur, are certain symmetric polynomials in n variables, indexed by partitions, that generalize the elementary symmetric polynomials and the complete homogeneous symmetric polynomials. In representation theory they are the characters of polynomial irreducible representations of the general linear groups. The Schur polynomials form a linear basis for the space of all symmetric polynomials. Any product of Schur polynomials can be written as a linear combination of Schur polynomials with non-negative integral coefficients; the values of these coefficients is given combinatorially by the Littlewood–Richardson rule. More generally, skew Schur polynomials are associated with pairs of partitions and have similar properties to Schur polynomials.

In functional analysis, the concept of a compact operator on Hilbert space is an extension of the concept of a matrix acting on a finite-dimensional vector space; in Hilbert space, compact operators are precisely the closure of finite-rank operators in the topology induced by the operator norm. As such, results from matrix theory can sometimes be extended to compact operators using similar arguments. By contrast, the study of general operators on infinite-dimensional spaces often requires a genuinely different approach.

In mathematics, Macdonald polynomialsPλ(x; t,q) are a family of orthogonal symmetric polynomials in several variables, introduced by Macdonald in 1987. He later introduced a non-symmetric generalization in 1995. Macdonald originally associated his polynomials with weights λ of finite root systems and used just one variable t, but later realized that it is more natural to associate them with affine root systems rather than finite root systems, in which case the variable t can be replaced by several different variables t=(t1,...,tk), one for each of the k orbits of roots in the affine root system. The Macdonald polynomials are polynomials in n variables x=(x1,...,xn), where n is the rank of the affine root system. They generalize many other families of orthogonal polynomials, such as Jack polynomials and Hall–Littlewood polynomials and Askey–Wilson polynomials, which in turn include most of the named 1-variable orthogonal polynomials as special cases. Koornwinder polynomials are Macdonald polynomials of certain non-reduced root systems. They have deep relationships with affine Hecke algebras and Hilbert schemes, which were used to prove several conjectures made by Macdonald about them.

In mathematics, an LLT polynomial is one of a family of symmetric functions introduced by Alain Lascoux, Bernard Leclerc, and Jean-Yves Thibon (1997) as q-analogues of products of Schur functions.

In mathematics, the Littlewood–Richardson rule is a combinatorial description of the coefficients that arise when decomposing a product of two Schur functions as a linear combination of other Schur functions. These coefficients are natural numbers, which the Littlewood–Richardson rule describes as counting certain skew tableaux. They occur in many other mathematical contexts, for instance as multiplicity in the decomposition of tensor products of finite-dimensional representations of general linear groups, or in the decomposition of certain induced representations in the representation theory of the symmetric group, or in the area of algebraic combinatorics dealing with Young tableaux and symmetric polynomials.

In mathematics, the Hall–Littlewood polynomials are symmetric functions depending on a parameter t and a partition λ. They are Schur functions when t is 0 and monomial symmetric functions when t is 1 and are special cases of Macdonald polynomials. They were first defined indirectly by Philip Hall using the Hall algebra, and later defined directly by Dudley E. Littlewood (1961).

Kostka number

In mathematics, the Kostka numberKλμ is a non-negative integer that is equal to the number of semistandard Young tableaux of shape λ and weight μ. They were introduced by the mathematician Carl Kostka in his study of symmetric functions.

In mathematics, Kostka polynomials, named after the mathematician Carl Kostka, are families of polynomials that generalize the Kostka numbers. They are studied primarily in algebraic combinatorics and representation theory.

Julius Borcea Romanian Swedish mathematician

Julius Bogdan Borcea was a Romanian Swedish mathematician. His scientific work included vertex operator algebra and zero distribution of polynomials and entire functions, via correlation inequalities and statistical mechanics.

This is a glossary of representation theory in mathematics.

References