N-ellipse

Last updated
Examples of 3-ellipses for three given foci. The progression of the distances is not linear. N-ellipse.svg
Examples of 3-ellipses for three given foci. The progression of the distances is not linear.

In geometry, the n-ellipse is a generalization of the ellipse allowing more than two foci. [1] n-ellipses go by numerous other names, including multifocal ellipse, [2] polyellipse, [3] egglipse, [4] k-ellipse, [5] and Tschirnhaus'sche Eikurve (after Ehrenfried Walther von Tschirnhaus). They were first investigated by James Clerk Maxwell in 1846. [6]

Contents

Given n focal points (ui,vi) in a plane, an n-ellipse is the locus of points of the plane whose sum of distances to the n foci is a constant d. In formulas, this is the set

The 1-ellipse is the circle, and the 2-ellipse is the classic ellipse. Both are algebraic curves of degree 2.

For any number n of foci, the n-ellipse is a closed, convex curve. [2] :(p. 90) The curve is smooth unless it goes through a focus. [5] :p.7

The n-ellipse is in general a subset of the points satisfying a particular algebraic equation. [5] :Figs. 2 and 4,p. 7 If n is odd, the algebraic degree of the curve is , while if n is even the degree is [5] :(Thm. 1.1)

n-ellipses are special cases of spectrahedra.

See also

Related Research Articles

<span class="mw-page-title-main">Algebraic geometry</span> Branch of mathematics

Algebraic geometry is a branch of mathematics, classically studying zeros of multivariate polynomials. Modern algebraic geometry is based on the use of abstract algebraic techniques, mainly from commutative algebra, for solving geometrical problems about these sets of zeros.

<span class="mw-page-title-main">Analytic geometry</span> Study of geometry using a coordinate system

In classical mathematics, analytic geometry, also known as coordinate geometry or Cartesian geometry, is the study of geometry using a coordinate system. This contrasts with synthetic geometry.

<span class="mw-page-title-main">Elliptic curve</span> Algebraic curve

In mathematics, an elliptic curve is a smooth, projective, algebraic curve of genus one, on which there is a specified point O. An elliptic curve is defined over a field K and describes points in K2, the Cartesian product of K with itself. If the field's characteristic is different from 2 and 3, then the curve can be described as a plane algebraic curve which consists of solutions (x, y) for:

<span class="mw-page-title-main">Curve</span> Mathematical idealization of the trace left by a moving point

The curve, also in mathematics called a curved line in theoretical and applied mathematics texts is the mathematical object similar or different to the axial straight plane lines, the curved line is not a straight line but may be a function, or the curved line may be part of a non straight plane, or part of a sphere or spherical object, or a curved plane, etc., and there too is different to straight lines that are part of straight planes but for some functions may be projected to a straight plane into straight planes.

<span class="mw-page-title-main">Lemniscate of Bernoulli</span> Plane algebraic curve

In geometry, the lemniscate of Bernoulli is a plane curve defined from two given points F1 and F2, known as foci, at distance 2c from each other as the locus of points P so that PF1·PF2 = c2. The curve has a shape similar to the numeral 8 and to the ∞ symbol. Its name is from lemniscatus, which is Latin for "decorated with hanging ribbons". It is a special case of the Cassini oval and is a rational algebraic curve of degree 4.

<span class="mw-page-title-main">Algebraic curve</span> Curve defined as zeros of polynomials

In mathematics, an affine algebraic plane curve is the zero set of a polynomial in two variables. A projective algebraic plane curve is the zero set in a projective plane of a homogeneous polynomial in three variables. An affine algebraic plane curve can be completed in a projective algebraic plane curve by homogenizing its defining polynomial. Conversely, a projective algebraic plane curve of homogeneous equation h(x, y, t) = 0 can be restricted to the affine algebraic plane curve of equation h(x, y, 1) = 0. These two operations are each inverse to the other; therefore, the phrase algebraic plane curve is often used without specifying explicitly whether it is the affine or the projective case that is considered.

<span class="mw-page-title-main">Dandelin spheres</span>

In geometry, the Dandelin spheres are one or two spheres that are tangent both to a plane and to a cone that intersects the plane. The intersection of the cone and the plane is a conic section, and the point at which either sphere touches the plane is a focus of the conic section, so the Dandelin spheres are also sometimes called focal spheres.

<span class="mw-page-title-main">Dupin cyclide</span> Geometric inversion of a torus, cylinder or double cone

In mathematics, a Dupin cyclide or cyclide of Dupin is any geometric inversion of a standard torus, cylinder or double cone. In particular, these latter are themselves examples of Dupin cyclides. They were discovered by Charles Dupin in his 1803 dissertation under Gaspard Monge. The key property of a Dupin cyclide is that it is a channel surface in two different ways. This property means that Dupin cyclides are natural objects in Lie sphere geometry.

<span class="mw-page-title-main">Tropical geometry</span> Skeletonized version of algebraic geometry

In mathematics, tropical geometry is the study of polynomials and their geometric properties when addition is replaced with minimization and multiplication is replaced with ordinary addition:

<span class="mw-page-title-main">Focus (geometry)</span> Term in geometry; special point from which certain types of curves are constructed

In geometry, focuses or foci, singular focus, are special points with reference to which any of a variety of curves is constructed. For example, one or two foci can be used in defining conic sections, the four types of which are the circle, ellipse, parabola, and hyperbola. In addition, two foci are used to define the Cassini oval and the Cartesian oval, and more than two foci are used in defining an n-ellipse.

<span class="mw-page-title-main">Cassini oval</span> Class of quartic plane curves

In geometry, a Cassini oval is a quartic plane curve defined as the locus of points in the plane such that the product of the distances to two fixed points (foci) is constant. This may be contrasted with an ellipse, for which the sum of the distances is constant, rather than the product. Cassini ovals are the special case of polynomial lemniscates when the polynomial used has degree 2.

Hilbert's seventeenth problem is one of the 23 Hilbert problems set out in a celebrated list compiled in 1900 by David Hilbert. It concerns the expression of positive definite rational functions as sums of quotients of squares. The original question may be reformulated as:

<span class="mw-page-title-main">Antiparallelogram</span> Polygon with four crossed edges of two lengths

In geometry, an antiparallelogram is a type of self-crossing quadrilateral. Like a parallelogram, an antiparallelogram has two opposite pairs of equal-length sides, but these pairs of sides are not in general parallel. Instead, sides in the longer pair cross each other as in a scissors mechanism. Antiparallelograms are also called contraparallelograms or crossed parallelograms.

<span class="mw-page-title-main">Geometric median</span> Point minimizing sum of distances to given points

In geometry, the geometric median of a discrete set of sample points in a Euclidean space is the point minimizing the sum of distances to the sample points. This generalizes the median, which has the property of minimizing the sum of distances for one-dimensional data, and provides a central tendency in higher dimensions. It is also known as the 1-median, spatial median, Euclidean minisum point, or Torricelli point.

<span class="mw-page-title-main">Euclidean plane</span> Geometric model of the planar projection of the physical universe

In mathematics, the Euclidean plane is a Euclidean space of dimension two. That is, a geometric setting in which two real quantities are required to determine the position of each point, which includes affine notions of parallel lines, and also metrical notions of distance, circles, and angle measurement.

<span class="mw-page-title-main">Conic section</span> Curve obtained by intersecting a cone and a plane

In mathematics, a conic section, quadratic curve or simply conic is a curve obtained as the intersection of the surface of a cone with a plane. The three types of conic section are the hyperbola, the parabola, and the ellipse; the circle is a special case of the ellipse, though historically it was sometimes called a fourth type. The ancient Greek mathematicians studied conic sections, culminating around 200 BC with Apollonius of Perga's systematic work on their properties.

<span class="mw-page-title-main">Line segment</span> Part of a line that is bounded by two distinct end points; line with two endpoints

In geometry, a line segment is a part of a straight line that is bounded by two distinct end points, and contains every point on the line that is between its endpoints. The length of a line segment is given by the Euclidean distance between its endpoints. A closed line segment includes both endpoints, while an open line segment excludes both endpoints; a half-open line segment includes exactly one of the endpoints. In geometry, a line segment is often denoted using a line above the symbols for the two endpoints.

<span class="mw-page-title-main">Director circle</span>

In geometry, the director circle of an ellipse or hyperbola is a circle consisting of all points where two perpendicular tangent lines to the ellipse or hyperbola cross each other.

<span class="mw-page-title-main">Cartesian oval</span> Class of geometric plane curves

In geometry, a Cartesian oval is a plane curve consisting of points that have the same linear combination of distances from two fixed points (foci). These curves are named after French mathematician René Descartes, who used them in optics.

In mathematics, a generalized conic is a geometrical object defined by a property which is a generalization of sums defining property of the classical conic. For example, in elementary geometry, an ellipse can be defined as the locus of a point which moves in a plane such that the sum of its distances from two fixed points – the foci – in the plane is a constant. The curve obtained when the set of two fixed points is replaced by an arbitrary, but fixed, finite set of points in the plane is called an n–ellipse and can be thought of as a generalized ellipse. Since an ellipse is the equidistant set of two circles, the equidistant set of two arbitrary sets of points in a plane can be viewed as a generalized conic. In rectangular Cartesian coordinates, the equation y = x2 represents a parabola. The generalized equation y = xr, for r ≠ 0 and r ≠ 1, can be treated as defining a generalized parabola. The idea of generalized conic has found applications in approximation theory and optimization theory.

References

  1. J. Sekino (1999): "n-Ellipses and the Minimum Distance Sum Problem", American Mathematical Monthly 106 #3 (March 1999), 193–202. MR 1682340; Zbl   986.51040.
  2. 1 2 Erdős, Paul; Vincze, István (1982). "On the Approximation of Convex, Closed Plane Curves by Multifocal Ellipses" (PDF). Journal of Applied Probability. 19: 89–96. doi:10.2307/3213552. JSTOR   3213552. S2CID   17166889. Archived from the original (PDF) on 28 September 2016. Retrieved 22 February 2015.
  3. Z.A. Melzak and J.S. Forsyth (1977): "Polyconics 1. polyellipses and optimization", Q. of Appl. Math., pages 239–255, 1977.
  4. P.V. Sahadevan (1987): "The theory of egglipse—a new curve with three focal points", International Journal of Mathematical Education in Science and Technology 18 (1987), 29–39. MR 872599; Zbl   613.51030.
  5. 1 2 3 4 J. Nie, P.A. Parrilo, B. Sturmfels: "J. Nie, P. Parrilo, B.St.: "Semidefinite representation of the k-ellipse", in Algorithms in Algebraic Geometry, I.M.A. Volumes in Mathematics and its Applications, 146, Springer, New York, 2008, pp. 117-132
  6. James Clerk Maxwell (1846): "Paper on the Description of Oval Curves, Feb 1846, from The Scientific Letters and Papers of James Clerk Maxwell: 1846-1862

Further reading