An N of 1 trial (N=1) is a multiple crossover clinical trial, conducted in a single patient. [1] A trial in which random allocation is used to determine the order in which an experimental and a control intervention are given to a single patient is an N of 1 randomized controlled trial. Some N of 1 trials involve randomized assignment and blinding, but the order of experimental and control interventions can also be fixed by the researcher. [2]
This type of study has enabled practitioners to achieve experimental progress without the work of designing a group comparison study. This design, especially if including blinding and wash-out periods, can be effective in confirming causality. N-of-1 trials, if used in clinical practice to inform therapeutic decisions concerned with the patient participating in the trial, can be a source of evidence about individual treatment responses, fulfilling the promise of personalized medicine. [3] [4]
The N of 1 trials can be designed in many ways. For example, Single-Patient Open Trials (SPOTs) are located somewhere in between the formal (explanatory) N of 1 trials and the trial and error approach used in clinical practice and are characterized by at least one crossover period with washout in between. [5] One of the most common procedures is the ABA withdrawal experimental design, where the patient problem is measured before a treatment is introduced (baseline) and then measured again during the treatment and finally when the treatment has terminated. If the problem vanished during the treatment it can be established that the treatment was effective. But the N=1 study can also be executed in an AB quasi experimental way; such type-2 N of 1 studies can be effective for testing treatments for severe, rare diseases when the expected effect of the intervention exceeds the effect size of confounders. [6] Another variation is non-concurrent experimental design where different points in time are compared with one another. The standard approach to therapy choice, the trial and error method, may also be included in the N of 1 design. [7] This experimental design also has a problem with causality, whereby statistical significance under a frequentist paradigm may be un-interpretable but other methods, such as clinical significance [8] or Bayesian methods should be considered.
Many consider this framework to be a proof of concept or hypothesis generating process to inform subsequent, larger clinical trials.
Design | Causality | Use |
---|---|---|
A-B | Quasi experiment | Often the only possible method |
A-A1-A | Experiment | Placebo design where A is no drug and A1 is a placebo |
A-B-A | Experiment | Withdrawal design where effects of B phase can be established |
A-B-A-B | Experiment | Withdrawal design where effects of B phase can be established |
A-B-A-B-A-B | Experiment | Withdrawal design where effects of B phase can be established |
A-B1-B2-B3-Bn-A | Experiment | Establishing the effect of different versions of B phase |
Quasi experiment means that causality cannot be definitively demonstrated. Experiment means that it can be demonstrated.
An N of 1 trial is usually used to assess individual responses to treatments targeting chronic diseases. [9] This design can be successfully implemented to determine optimal treatments for patients with diseases as diverse as osteoarthritis, chronic neuropathic pain and attention deficit hyperactivity disorder. [10]
N of 1 designs can also be observational and describe natural intra-individual changes in health-related behaviours or symptoms longitudinally. N of 1 observational designs require complex statistical analysis of N of 1 data however, a simple 10-step procedure is available. [11] There has also been work to adapt causal inference counterfactual methods for using N of 1 observational studies to design subsequent N of 1 trials. [12]
While N of 1 trials are increasing, results of a recent systematic review found that statistical analyses in these studies would improve with more methodological and statistical rigor across all periods of the studies. [13]
With the cultural phenomenon of the quantified self a proliferation of personal experiments akin to N=1 is occurring, along with some detailed reports about them. This trend has been sparked in part by the growing ease of collecting data and analysing it, and also motivated by the ability of individuals to report such data easily. [14]
A famous proponent and active experimenter was Seth Roberts, who reported on his self-experimental findings on his blog, and later published The Shangri-La Diet based on his conclusions from these self-experiments.
The International Collaborative Network for N-of-1 Trials and Single-Case Designs (ICN) [15] is a global network for clinicians, researchers and consumers who have an interest in these methods. There are over 400 members of the ICN who are based in over 30 countries across the globe. The ICN was established in 2017 and is co-chaired by Jane Nikles and Suzanne McDonald.
Evidence-based medicine (EBM) is "the conscientious, explicit and judicious use of current best evidence in making decisions about the care of individual patients. ... [It] means integrating individual clinical expertise with the best available external clinical evidence from systematic research." The aim of EBM is to integrate the experience of the clinician, the values of the patient, and the best available scientific information to guide decision-making about clinical management. The term was originally used to describe an approach to teaching the practice of medicine and improving decisions by individual physicians about individual patients.
A randomized controlled trial is a form of scientific experiment used to control factors not under direct experimental control. Examples of RCTs are clinical trials that compare the effects of drugs, surgical techniques, medical devices, diagnostic procedures, diets or other medical treatments.
Clinical trials are prospective biomedical or behavioral research studies on human participants designed to answer specific questions about biomedical or behavioral interventions, including new treatments and known interventions that warrant further study and comparison. Clinical trials generate data on dosage, safety and efficacy. They are conducted only after they have received health authority/ethics committee approval in the country where approval of the therapy is sought. These authorities are responsible for vetting the risk/benefit ratio of the trial—their approval does not mean the therapy is 'safe' or effective, only that the trial may be conducted.
In a blind or blinded experiment, information which may influence the participants of the experiment is withheld until after the experiment is complete. Good blinding can reduce or eliminate experimental biases that arise from a participants' expectations, observer's effect on the participants, observer bias, confirmation bias, and other sources. A blind can be imposed on any participant of an experiment, including subjects, researchers, technicians, data analysts, and evaluators. In some cases, while blinding would be useful, it is impossible or unethical. For example, it is not possible to blind a patient to their treatment in a physical therapy intervention. A good clinical protocol ensures that blinding is as effective as possible within ethical and practical constraints.
Personalized medicine, also referred to as precision medicine, is a medical model that separates people into different groups—with medical decisions, practices, interventions and/or products being tailored to the individual patient based on their predicted response or risk of disease. The terms personalized medicine, precision medicine, stratified medicine and P4 medicine are used interchangeably to describe this concept, though some authors and organizations differentiate between these expressions based on particular nuances. P4 is short for "predictive, preventive, personalized and participatory".
Clinical study design is the formulation of trials and experiments, as well as observational studies in medical, clinical and other types of research involving human beings. The goal of a clinical study is to assess the safety, efficacy, and / or the mechanism of action of an investigational medicinal product (IMP) or procedure, or new drug or device that is in development, but potentially not yet approved by a health authority. It can also be to investigate a drug, device or procedure that has already been approved but is still in need of further investigation, typically with respect to long-term effects or cost-effectiveness.
In causal inference, a confounder is a variable that influences both the dependent variable and independent variable, causing a spurious association. Confounding is a causal concept, and as such, cannot be described in terms of correlations or associations. The existence of confounders is an important quantitative explanation why correlation does not imply causation. Some notations are explicitly designed to identify the existence, possible existence, or non-existence of confounders in causal relationships between elements of a system.
A hierarchy of evidence, comprising levels of evidence (LOEs), that is, evidence levels (ELs), is a heuristic used to rank the relative strength of results obtained from experimental research, especially medical research. There is broad agreement on the relative strength of large-scale, epidemiological studies. More than 80 different hierarchies have been proposed for assessing medical evidence. The design of the study and the endpoints measured affect the strength of the evidence. In clinical research, the best evidence for treatment efficacy is mainly from meta-analyses of randomized controlled trials (RCTs). Systematic reviews of completed, high-quality randomized controlled trials – such as those published by the Cochrane Collaboration – rank the same as systematic review of completed high-quality observational studies in regard to the study of side effects. Evidence hierarchies are often applied in evidence-based practices and are integral to evidence-based medicine (EBM).
In medicine an intention-to-treat (ITT) analysis of the results of a randomized controlled trial is based on the initial treatment assignment and not on the treatment eventually received. ITT analysis is intended to avoid various misleading artifacts that can arise in intervention research such as non-random attrition of participants from the study or crossover. ITT is also simpler than other forms of study design and analysis, because it does not require observation of compliance status for units assigned to different treatments or incorporation of compliance into the analysis. Although ITT analysis is widely employed in published clinical trials, it can be incorrectly described and there are some issues with its application. Furthermore, there is no consensus on how to carry out an ITT analysis in the presence of missing outcome data.
Zelen's design is an experimental design for randomized clinical trials proposed by Harvard School of Public Health statistician Marvin Zelen (1927-2014). In this design, patients are randomized to either the treatment or control group before giving informed consent. Because the group to which a given patient is assigned is known, consent can be sought conditionally.
In medical research, a dynamic treatment regime (DTR), adaptive intervention, or adaptive treatment strategy is a set of rules for choosing effective treatments for individual patients. Historically, medical research and the practice of medicine tended to rely on an acute care model for the treatment of all medical problems, including chronic illness. Treatment choices made for a particular patient under a dynamic regime are based on that individual's characteristics and history, with the goal of optimizing his or her long-term clinical outcome. A dynamic treatment regime is analogous to a policy in the field of reinforcement learning, and analogous to a controller in control theory. While most work on dynamic treatment regimes has been done in the context of medicine, the same ideas apply to time-varying policies in other fields, such as education, marketing, and economics.
The experience sampling method (ESM), also referred to as a daily diary method, or ecological momentary assessment (EMA), is an intensive longitudinal research methodology that involves asking participants to report on their thoughts, feelings, behaviors, and/or environment on multiple occasions over time. Participants report on their thoughts, feelings, behaviors, and/or environment in the moment or shortly thereafter. Participants can be given a journal with many identical pages. Each page can have a psychometric scale, open-ended questions, or anything else used to assess their condition in that place and time. ESM studies can also operate fully automatized on portable electronic devices or via the internet. The experience sampling method was developed by Suzanne Prescott during doctoral work at University of Chicago's Committee on Human Development with assistance from her dissertation advisor Mihaly Csikszentmihalyi. Early studies that used ESM were coauthored by fellow students Reed W. Larson and Ronald Graef, whose dissertations both used the method.
The Jadad scale, sometimes known as Jadad scoring or the Oxford quality scoring system, is a procedure to assess the methodological quality of a clinical trial by objective criteria. It is named after Canadian-Colombian physician Alex Jadad who in 1996 described a system for allocating such trials a score of between zero and five (rigorous). It is the most widely used such assessment in the world, and as of May 2024, its seminal paper has been cited in over 24,500 scientific works.
Placebo-controlled studies are a way of testing a medical therapy in which, in addition to a group of subjects that receives the treatment to be evaluated, a separate control group receives a sham "placebo" treatment which is specifically designed to have no real effect. Placebos are most commonly used in blinded trials, where subjects do not know whether they are receiving real or placebo treatment. Often, there is also a further "natural history" group that does not receive any treatment at all.
Platelet-rich plasma (PRP), also known as autologous conditioned plasma, is a concentrate of plasma protein derived from whole blood, centrifuged to remove red blood cells but retaining platelets. Though promoted for treating various medical conditions, evidence of its benefits was mixed as of 2020, showing effectiveness in certain conditions and ineffectiveness in others.
The phases of clinical research are the stages in which scientists conduct experiments with a health intervention to obtain sufficient evidence for a process considered effective as a medical treatment. For drug development, the clinical phases start with testing for drug safety in a few human subjects, then expand to many study participants to determine if the treatment is effective. Clinical research is conducted on drug candidates, vaccine candidates, new medical devices, and new diagnostic assays.
There is a cure for the Ebola virus disease that is currently approved for market the US government has inventory in the Strategic National Stockpile. For past and current Ebola epidemics, treatment has been primarily supportive in nature.
A disease-modifying osteoarthritis drug (DMOAD) is a disease-modifying drug that would inhibit or even reverse the progression of osteoarthritis. Since the main hallmark of osteoarthritis is cartilage loss, a typical DMOAD would prevent the loss of cartilage and potentially regenerate it. Other DMOADs may attempt to help repair adjacent tissues by reducing inflammation. A successful DMOAD would be expected to show an improvement in patient pain and function with an improvement of the health of the joint tissues.
In an adaptive design of a clinical trial, the parameters and conduct of the trial for a candidate drug or vaccine may be changed based on an interim analysis. Adaptive design typically involves advanced statistics to interpret a clinical trial endpoint. This is in contrast to traditional single-arm clinical trials or randomized clinical trials (RCTs) that are static in their protocol and do not modify any parameters until the trial is completed. The adaptation process takes place at certain points in the trial, prescribed in the trial protocol. Importantly, this trial protocol is set before the trial begins with the adaptation schedule and processes specified. Adaptions may include modifications to: dosage, sample size, drug undergoing trial, patient selection criteria and/or "cocktail" mix. The PANDA provides not only a summary of different adaptive designs, but also comprehensive information on adaptive design planning, conduct, analysis and reporting.
Psychoplastogens are a group of small molecule drugs that produce rapid and sustained effects on neuronal structure and function, intended to manifest therapeutic benefit after a single administration. Several existing psychoplastogens have been identified and their therapeutic effects demonstrated; several are presently at various stages of development as medications including ketamine, MDMA, scopolamine, and the serotonergic psychedelics, including LSD, psilocin, DMT, and 5-MeO-DMT. Compounds of this sort are being explored as therapeutics for a variety of brain disorders including depression, addiction, and PTSD. The ability to rapidly promote neuronal changes via mechanisms of neuroplasticity was recently discovered as the common therapeutic activity and mechanism of action.
{{cite journal}}
: CS1 maint: multiple names: authors list (link){{cite book}}
: CS1 maint: multiple names: authors list (link)