Nano-particle field extraction thruster

Last updated

The Nano-particle field extraction thruster or NanoFET is an experimental high-speed spacecraft engine under development by the University of Michigan. [1] It provides thrust by emitting charged particles. These particles are cylindrical carbon nanotubes which can either be contained in tanks or manufactured in-flight. By varying the size of these particles, the nanoFET can vary its fuel efficiency (specific impulse), and consequently the amount of thrust output, while maintaining high power efficiency. This adjustability gives the nanoFET the performance characteristics of all the electric thrusters in one. Like other electric propulsion systems, the nanoFET is not intended for operation inside Earth's atmosphere but for operations in orbit and deep space. [2]

Contents

Principle

The nanoFET's adjustable force and specific impulse make it extremely versatile. It can produce more thrust while using less power and fuel than any other electronic thrust system. [3] In addition, no charge is built up within the system as a whole; any negative charge built up on one charging pad is canceled by the positive charge built up on another. The high level of integration with its fuel containers makes it extremely compact and easy to place in a space ship. [4] Unfortunately, like all other electronic thrusters, it produces nowhere near the amount of thrust that current chemical rockets produce (a few hundred Newtons compared to ~15 million Newtons). [3] [5] Although the fact that it doesn't need a few million pounds of fuel does significantly offset this power difference, in their current form, nanoFETs are not suitable for earth based launches.

A nanoFET works in a fairly straightforward manner. It consists of three main parts: a particle storage area, a charging pad, and an acceleration grid. To start, it transports cylindrical particles to the charging pad which then imposes a charge on the particles. As the particle gains charge, the pulling force from the acceleration grid increases. Eventually, this pulling force overpowers the electro-magnetic and surface adhesion forces between the particles and charging pad. Now the particle begins accelerating towards the acceleration grid until it is shot out of the nanoFET, consequently pushing the nanoFET in the opposite direction.

There are two types of nanoFET, a dry-nanoFET and the "normal" wet-nanoFET. The prefix refers to their method of particle transportation, a wet-nanoFET uses liquid whereas a dry does not.

Wet-NanoFET

Most prototypes and testing up to now has been done on a wet-nanoFET. This design uses a low surface-tension, low viscosity, and non-conductive liquid to transport and/or store cylindrical particles. These particles are carbon-nano-tubes ranging in size from 1 nm to 100 nm. [3] Issues with this design involve the potential for colloid formation, the liquid vaporizing in space, and the increased space and weight.

Dry-NanoFET

This variation looks to be better than the wet-nanoFET as it has none of the liquid based problems of the wet-nanoFET. Unfortunately, not much information has been released on how it manages to transport particles to the charging pad. Once at the charging pad, it uses a piezoelectric layer to get the particles moving and to get them off the charging pad. This breaks the adhesion force and severely reduces their attraction to the charging pad, allowing the acceleration grid to start pulling them out.[ citation needed ]

Challenges

As can be imagined, there were plenty of challenges encountered while designing the nanoFET. One of the main ones was how to transport particles to the charging pad. While a liquid is the easiest way to transport the particles, it can form tiny cones (Taylor cones) and charged droplets (colloids), which severely affect a nanoFET's ability to fine tune its thrust. Initially, non-conductive liquids with low surface tension and viscosity, such as 100cSt silicon oil, were found to be able to withstand a large electro-magnetic field without forming colloids. Later on, prototypes using dry mechanisms to transport the particles were developed. These dry-nanoFET configurations use electronically actuated materials (piezoelectrics) to break surface tension and get the particles moving. [6]

Similarly, spherical particles were used in early prototypes but were later substituted with cylindrical particles. This is mainly because cylindrical particles gain much more charge than spherical particles, as they stand on end when being charged. Given also that cylinders penetrate a liquid's surface more easily and take less liquid with them, they are the ideal shape for a nanoFET. These properties allow cylindrical nano-particles to be extracted, whereas the smallest extractable spheres are on the order of millimeters. [3]

Related Research Articles

<span class="mw-page-title-main">Spacecraft propulsion</span> Method used to accelerate spacecraft

Spacecraft propulsion is any method used to accelerate spacecraft and artificial satellites. In-space propulsion exclusively deals with propulsion systems used in the vacuum of space and should not be confused with space launch or atmospheric entry.

<span class="mw-page-title-main">Ion thruster</span> Spacecraft engine that generates thrust by generating a jet of ions

An ion thruster, ion drive, or ion engine is a form of electric propulsion used for spacecraft propulsion. It creates thrust by accelerating ions using electricity.

Field-emission electric propulsion (FEEP) is an advanced electrostatic space propulsion concept, a form of ion thruster, that uses a liquid metal as a propellant – usually either caesium, indium, or mercury.

A propellant is a mass that is expelled or expanded in such a way as to create a thrust or another motive force in accordance with Newton's third law of motion, and "propel" a vehicle, projectile, or fluid payload. In vehicles, the engine that expels the propellant is called a reaction engine. Although technically a propellant is the reaction mass used to create thrust, the term "propellant" is often used to describe a substance which contains both the reaction mass and the fuel that holds the energy used to accelerate the reaction mass. For example, the term "propellant" is often used in chemical rocket design to describe a combined fuel/propellant, although the propellants should not be confused with the fuel that is used by an engine to produce the energy that expels the propellant. Even though the byproducts of substances used as fuel are also often used as a reaction mass to create the thrust, such as with a chemical rocket engine, propellant and fuel are two distinct concepts.

<span class="mw-page-title-main">Electrophoresis</span> Motion of charged particles in electric field

In chemistry, electrophoresis is the motion of charged dispersed particles or dissolved charged molecules relative to a fluid under the influence of a spatially uniform electric field. Electrophoresis of positively charged particles or molecules (cations) is sometimes called cataphoresis, while electrophoresis of negatively charged particles or molecules (anions) is sometimes called anaphoresis.

<span class="mw-page-title-main">Colloidal gold</span> Suspension of gold nanoparticles in a liquid

Colloidal gold is a sol or colloidal suspension of nanoparticles of gold in a fluid, usually water. The colloid is coloured usually either wine red or blue-purple . Due to their optical, electronic, and molecular-recognition properties, gold nanoparticles are the subject of substantial research, with many potential or promised applications in a wide variety of areas, including electron microscopy, electronics, nanotechnology, materials science, and biomedicine.

<span class="mw-page-title-main">Zeta potential</span> Electrokinetic potential in colloidal dispersions

Zeta potential is the electrical potential at the slipping plane. This plane is the interface which separates mobile fluid from fluid that remains attached to the surface.

<span class="mw-page-title-main">Nanoparticle</span> Particle with size less than 100 nm

A nanoparticle or ultrafine particle is usually defined as a particle of matter that is between 1 and 100 nanometres (nm) in diameter. The term is sometimes used for larger particles, up to 500 nm, or fibers and tubes that are less than 100 nm in only two directions. At the lowest range, metal particles smaller than 1 nm are usually called atom clusters instead.

<span class="mw-page-title-main">Gridded ion thruster</span> Space propulsion system

The gridded ion thruster is a common design for ion thrusters, a highly efficient low-thrust spacecraft propulsion method running on electrical power by using high-voltage grid electrodes to accelerate ions with electrostatic forces.

The name electrospray is used for an apparatus that employs electricity to disperse a liquid or for the fine aerosol resulting from this process. High voltage is applied to a liquid supplied through an emitter. Ideally the liquid reaching the emitter tip forms a Taylor cone, which emits a liquid jet through its apex. Varicose waves on the surface of the jet lead to the formation of small and highly charged liquid droplets, which are radially dispersed due to Coulomb repulsion.

<span class="mw-page-title-main">Nanofabrics</span> Textiles engineered with small particles that give ordinary materials advantageous properties

Nanofabrics are textiles engineered with small particles that give ordinary materials advantageous properties such as superhydrophobicity, odor and moisture elimination, increased elasticity and strength, and bacterial resistance. Depending on the desired property, a nanofabric is either constructed from nanoscopic fibers called nanofibers, or is formed by applying a solution containing nanoparticles to a regular fabric. Nanofabrics research is an interdisciplinary effort involving bioengineering, molecular chemistry, physics, electrical engineering, computer science, and systems engineering. Applications of nanofabrics have the potential to revolutionize textile manufacturing and areas of medicine such as drug delivery and tissue engineering.

<span class="mw-page-title-main">Spacecraft electric propulsion</span> Type of space propulsion using electrostatic and electromagnetic fields for acceleration

Spacecraft electric propulsion is a type of spacecraft propulsion technique that uses electrostatic or electromagnetic fields to accelerate mass to high speed and thus generate thrust to modify the velocity of a spacecraft in orbit. The propulsion system is controlled by power electronics.

<span class="mw-page-title-main">Double layer (surface science)</span> Molecular interface between a surface and a fluid

In surface science, a double layer is a structure that appears on the surface of an object when it is exposed to a fluid. The object might be a solid particle, a gas bubble, a liquid droplet, or a porous body. The DL refers to two parallel layers of charge surrounding the object. The first layer, the surface charge, consists of ions which are adsorbed onto the object due to chemical interactions. The second layer is composed of ions attracted to the surface charge via the Coulomb force, electrically screening the first layer. This second layer is loosely associated with the object. It is made of free ions that move in the fluid under the influence of electric attraction and thermal motion rather than being firmly anchored. It is thus called the "diffuse layer".

Electrokinetic phenomena are a family of several different effects that occur in heterogeneous fluids, or in porous bodies filled with fluid, or in a fast flow over a flat surface. The term heterogeneous here means a fluid containing particles. Particles can be solid, liquid or gas bubbles with sizes on the scale of a micrometer or nanometer. There is a common source of all these effects—the so-called interfacial 'double layer' of charges. Influence of an external force on the diffuse layer generates tangential motion of a fluid with respect to an adjacent charged surface. This force might be electric, pressure gradient, concentration gradient, or gravity. In addition, the moving phase might be either continuous fluid or dispersed phase.

<span class="mw-page-title-main">Janus particles</span> Type of nanoparticle or microparticle

Janus particles are special types of nanoparticles or microparticles whose surfaces have two or more distinct physical properties. This unique surface of Janus particles allows two different types of chemistry to occur on the same particle. The simplest case of a Janus particle is achieved by dividing the particle into two distinct parts, each of them either made of a different material, or bearing different functional groups. For example, a Janus particle may have one half of its surface composed of hydrophilic groups and the other half hydrophobic groups, the particles might have two surfaces of different color, fluorescence, or magnetic properties. This gives these particles unique properties related to their asymmetric structure and/or functionalization.

The peptization of a liquid mixture is the process of converting the mixture into a colloid by shaking it with a suitable electrolyte called a peptizing agent. That is, the insoluble solid particles which have settled out of the mixture are reformed into microscopic particles suspended in the mixture. Peptization is the reverse of flocculation, the aggregation of colloidal particles into precipitate; as such, it is also known as deflocculation.

The Stöber process is a chemical process used to prepare silica particles of controllable and uniform size for applications in materials science. It was pioneering when it was reported by Werner Stöber and his team in 1968, and remains today the most widely used wet chemistry synthetic approach to silica nanoparticles. It is an example of a sol-gel process wherein a molecular precursor is first reacted with water in an alcoholic solution, the resulting molecules then joining together to build larger structures. The reaction produces silica particles with diameters ranging from 50 to 2000 nm, depending on conditions. The process has been actively researched since its discovery, including efforts to understand its kinetics and mechanism – a particle aggregation model was found to be a better fit for the experimental data than the initially hypothesized LaMer model. The newly acquired understanding has enabled researchers to exert a high degree of control over particle size and distribution and to fine-tune the physical properties of the resulting material in order to suit intended applications.

<span class="mw-page-title-main">Superhydrophobic coating</span> Water-repellant coating

A superhydrophobic coating is a thin surface layer that repels water. It is made from superhydrophobic (ultrahydrophobicity) materials. Droplets hitting this kind of coating can fully rebound. Generally speaking, superhydrophobic coatings are made from composite materials where one component provides the roughness and the other provides low surface energy.

<span class="mw-page-title-main">Self-assembly of nanoparticles</span>

Nanoparticles are classified as having at least one of its dimensions in the range of 1-100 nanometers (nm). The small size of nanoparticles allows them to have unique characteristics which may not be possible on the macro-scale. Self-assembly is the spontaneous organization of smaller subunits to form larger, well-organized patterns. For nanoparticles, this spontaneous assembly is a consequence of interactions between the particles aimed at achieving a thermodynamic equilibrium and reducing the system’s free energy. The thermodynamics definition of self-assembly was introduced by Professor Nicholas A. Kotov. He describes self-assembly as a process where components of the system acquire non-random spatial distribution with respect to each other and the boundaries of the system. This definition allows one to account for mass and energy fluxes taking place in the self-assembly processes.

Space Engine Systems Inc. (SES) is a Canadian aerospace company and is located in Edmonton, Alberta, Canada. The main focus of the company is the development of a light multi-fuel propulsion system to power a reusable single-stage-to-orbit (SSTO) and hypersonic cruise vehicle. Pumps, compressors, gear boxes, and other related technologies being developed are integrated into SES's major R&D projects. SES has collaborated with the University of Calgary to study and develop technologies in key technical areas of nanotechnology and high-speed aerodynamics.

References

  1. Boysen, E. & Muir, N.C. (2011) Nanotechnology For Dummies. 2 Ed., p.172., For Dummies, ISBN   1-118-13686-1. Retrieved July 2011
  2. Drenkow, Brittany D.; Thomas M. Liu; John L. Bell; Mike X. Huang; et al. (2009). "Developing a Reduced Gravity Testbed for the Nanoparticle Field Extraction Thruster" (PDF). Retrieved 7 February 2012.{{cite journal}}: Cite journal requires |journal= (help)
  3. 1 2 3 4 Louis, Musinski; Thomas Liu; Brian Gilchrist; Alec D. Gallimore; et al. (2007). "Experimental Results and Modeling Advances in the Study of the Nanoparticle Field Extraction Thruster" . Retrieved 7 May 2016.{{cite journal}}: Cite journal requires |journal= (help)
  4. Liu, Thomas M.; Micheal Keidar; Louis D. Musinski; Alec D. Gallimore; et al. (2006). "Theoretical Aspects of Nanoparticle Electric Propulsion" (PDF). Retrieved 2 February 2012.{{cite journal}}: Cite journal requires |journal= (help)
  5. Brian, Marshall. "Thrust". How Rocket Engines Work. Retrieved 12 February 2012.
  6. Liu, Thomas M.; Brittany D. Drenkow; Louis D. Musinski; Alec D. Gallimore; et al. (2008). "Developmental Progress of the Nanoparticle Field Extraction Thruster" (PDF).{{cite journal}}: Cite journal requires |journal= (help)