Neurocristopathy

Last updated

Neurocristopathy is a diverse class of pathologies that may arise from defects in the development of tissues containing cells commonly derived from the embryonic neural crest cell lineage. [1] [2] The term was coined by Robert P. Bolande in 1974. [3]

After the induction of the neural crest, the newly formed neural crest cells (NCC) delaminate from their tissue of origin and migrate from the entire neural axis of the vertebrate embryo to specific locations where they will give rise to different cell derivatives. The formation of this cell population therefore requires a timely and spatially controlled interplay of inter- and intra-cellular signals. An alteration in the occurrence and timing of these signals leads to a set of syndromes called Neurocristopathies (NCP), which comprises a broad spectrum of congenital malformations affecting an appreciable percentage of newborns. [4] Moreover, since NCC migrate along the embryo, they are susceptible to subtle changes in the environment both during their migration and upon arrival at their destination. This means that even little modifications, either genetically or environmentally caused, [5] in the external cues that modulate NCC migration have a deep effect on the normal migration and differentiation of these cells, thus becoming a causative factor for the development of NCP.

Recently, a new classification for this group of diseases has been proposed. [6] This new criteria takes into account the axial origin of the NC population that contributes to the derived tissue affected in a particular NCP. According to this, some diseases have a single axial origin, i.e, they arise from an alteration in the development of only one NC population (e.g cranial NCP, such as Auriculo Condylar Syndrome). However, other NCP arise from a defect in two or more NC populations (such as the CHARGE syndrome).

Accepted examples of NCP are piebaldism, Waardenburg syndrome, Hirschsprung disease, Ondine's curse (congenital central hypoventilation syndrome), pheochromocytoma, paraganglioma, Merkel cell carcinoma, multiple endocrine neoplasia, neurofibromatosis type I, CHARGE syndrome, familial dysautonomia, DiGeorge syndrome, Axenfeld-Rieger syndrome, Goldenhar syndrome (a.k.a. hemifacial microsomia), craniofrontonasal syndrome, congenital melanocytic nevus, melanoma, and certain congenital heart defects of the outflow tract. Recently, many diseases have been incorporated as NCP, mainly based on the finding of new NC derivatives. In particular, Multiple sclerosis has been suggested as being neurocristopathic in origin. [7]

The usefulness of the definition resides in its ability to refer to a potentially common etiological factor for certain neoplasms and/or congenital malformation associations that are otherwise difficult to group with other means of nosology. Moreover, the classification of NCP is intended to help physicians understand the causal mechanism that drives the formation of a certain NCP, and therefore the selection of the correct diagnostic test and therapies.

Related Research Articles

Teratology is the study of abnormalities of physiological development in all organisms including plants during the entire life span. A sub discipline in Medical Genetics which focuses on the classification of congenital abnormalities is dysmorphology. The related term developmental toxicity includes all manifestations of abnormal development that are caused by environmental insult. These may include growth retardation, delayed mental development or other congenital disorders without any structural malformations.

Birth defect Condition present at birth regardless of cause; human disease or disorder developed prior to birth

A birth defect, also known as a congenital disorder, is a condition present at birth regardless of its cause. Birth defects may result in disabilities that may be physical, intellectual, or developmental. The disabilities can range from mild to severe. Birth defects are divided into two main types: structural disorders in which problems are seen with the shape of a body part and functional disorders in which problems exist with how a body part works. Functional disorders include metabolic and degenerative disorders. Some birth defects include both structural and functional disorders.

In humans and other mammals, the caudal cell mass is the aggregate of undifferentiated cells at the caudal end on the spine. The caudal end of the spinal cord first begins to form after primary neuralation has taken place, indicating that it develops after the cranial portion of the spinal cord has developed. Following neuralation, the caudal tail begins to form a neurocele as it develops a hollow core. After this, secondary neuralation occurs in which the medullary cord begins to form and is filled with many cavities that ultimately form the lumen. The cavities formed from the initial and secondary neuralation combine to form one uninterrupted cavity. There is still speculation on the formation of the caudal cell mass in humans with arguments being made for it arising from many cavities or the continuing growth of the neurocele from the initial neuralation. The caudal cell mass will ultimately differentiate and form into many sacral structures such various nerve endings and the conus medullaris.

Waardenburg syndrome Genetic condition involving hearing loss and depigmentation

Waardenburg syndrome is a group of rare genetic conditions characterised by at least some degree of congenital hearing loss and pigmentation deficiencies, which can include bright blue eyes, a white forelock or patches of light skin. These basic features constitute type 2 of the condition; in type 1, there is also a wider gap between the inner corners of the eyes called telecanthus, or dystopia canthorum. In type 3, which is rare, the arms and hands are also malformed, with permanent finger contractures or fused fingers, while in type 4 the person also has Hirschsprung's disease, which is a congenital lack of nerves in the intestines leading to bowel dysfunction. There also exist at least two types that can result in central nervous system symptoms such as developmental delay and muscle tone abnormalities.

Congenital heart defect Defect in the structure of the heart that is present at birth

A congenital heart defect (CHD), also known as a congenital heart anomaly and congenital heart disease, is a defect in the structure of the heart or great vessels that is present at birth. Signs and symptoms depend on the specific type of defect. Symptoms can vary from none to life-threatening. When present, symptoms may include rapid breathing, bluish skin (cyanosis), poor weight gain, and feeling tired. CHD does not cause chest pain. Most congenital heart defects are not associated with other diseases. A complication of CHD is heart failure.

Neural crest Embyronic group of cells giving rise to diverse cell lineages

Neural crest cells are a temporary group of cells unique to vertebrates that arise from the embryonic ectoderm germ layer, and in turn give rise to a diverse cell lineage—including melanocytes, craniofacial cartilage and bone, smooth muscle, peripheral and enteric neurons and glia.

Gyrus

In neuroanatomy, a gyrus is a ridge on the cerebral cortex. It is generally surrounded by one or more sulci. Gyri and sulci create the folded appearance of the brain in humans and other mammals.

Persistent truncus arteriosus Medical condition

Persistent truncus arteriosus (PTA), often referred to simply as Truncus Arteriosus, is a rare form of congenital heart disease that presents at birth. In this condition, the embryological structure known as the truncus arteriosus fails to properly divide into the pulmonary trunk and aorta. This results in one arterial trunk arising from the heart and providing mixed blood to the coronary arteries, pulmonary arteries, and systemic circulation. For the International Classification of Diseases (ICD-11), the International Paediatric and Congenital Cardiac Code (IPCCC) was developed to standardize the nomenclature of congenital heart disease. Under this system, English is now the official language, and persistent truncus arteriosus should properly be termed Common arterial trunk.

GLI2

Zinc finger protein GLI2 also known as GLI family zinc finger 2 is a protein that in humans is encoded by the GLI2 gene. The protein encoded by this gene is a transcription factor.

Foregut Anterior part of the gastrointestinal tract

The foregut is the anterior part of the alimentary canal, from the mouth to the duodenum at the entrance of the bile duct. Beyond the stomach, the foregut is attached to the abdominal walls by mesentery. The foregut arises from the endoderm, developing from the folding primitive gut, and is developmentally distinct from the midgut and hindgut. Although the term “foregut” is typically used in reference to the anterior section of the primitive gut, components of the adult gut can also be described with this designation. Pain in the epigastric region, just below the intersection of the ribs, typically refers to structures in the adult foregut.

Neural fold

The neural fold is a structure that arises during neurulation in the embryonic development of both birds and mammals among other organisms. This structure is associated with primary neurulation, meaning that it forms by the coming together of tissue layers, rather than a clustering, and subsequent hollowing out, of individual cells. In humans, the neural folds are responsible for the formation of the anterior end of the neural tube. The neural folds are derived from the neural plate, a preliminary structure consisting of elongated ectoderm cells. The folds give rise to neural crest cells, as well as bringing about the formation of the neural tube.

Piebaldism Medical condition

'Piebaldism’ refers to the absence of mature melanin-forming cells (melanocytes) in certain areas of the skin and hair. It is a rare autosomal dominant disorder of melanocyte development. Common characteristics include a congenital white forelock, scattered normal pigmented and hypopigmented macules and a triangular shaped depigmented patch on the forehead. There is nevertheless great variation in the degree and pattern of presentation, even within affected families. In some cases, piebaldism occurs together with severe developmental problems, as in Waardenburg syndrome and Hirschsprung's disease.

PHOX2B

Paired-like homeobox 2b (PHOX2B), also known as neuroblastoma Phox (NBPhox), is a protein that in humans is encoded by the PHOX2B gene located on chromosome 4.

Mesenchyme Type of connective tissue found mostly during the embryonic development of bilateral triploblast animals

Mesenchyme is a type of connective tissue found mostly during the embryonic development of bilateral triploblast animals.

Mef2

In the field of molecular biology, myocyte enhancer factor-2 (Mef2) proteins are a family of transcription factors which through control of gene expression are important regulators of cellular differentiation and consequently play a critical role in embryonic development. In adult organisms, Mef2 proteins mediate the stress response in some tissues. Mef2 proteins contain both MADS-box and Mef2 DNA-binding domains.

Acrania Medical condition

Acrania is a rare congenital disorder that occurs in the human fetus in which the flat bones in the cranial vault are either completely or partially absent. The cerebral hemispheres develop completely but abnormally. The condition is frequently, though not always, associated with anencephaly. The fetus is said to suffer from acrania if it meets the following criteria: the foetus should have a perfectly normal facial bone, a normal cervical column but without the fetal skull and a volume of brain tissue equivalent to at least one third of the normal brain size.

HAND1

Heart- and neural crest derivatives-expressed protein 1 is a protein that in humans is encoded by the HAND1 gene.

Bonnet–Dechaume–Blanc syndrome Medical condition

Bonnet–Dechaume–Blanc syndrome, also known as Wyburn-Mason syndrome, is a rare congenital disorder characterized by arteriovenous malformations of the brain, retina or facial nevi. The syndrome has a number of possible symptoms and can, more rarely, affect the skin, bones, kidneys, muscles, and gastrointestinal tract. When the syndrome affects the brain, people can experience severe headaches, seizures, acute stroke, meningism, and progressive neurological deficits due to acute or chronic ischaemia caused by arteriovenous shunting.

Neural crest cells are multipotent cells required for the development of cells, tissues and organ systems. A subpopulation of neural crest cells are the cardiac neural crest complex. This complex refers to the cells found amongst the midotic placode and somite 3 destined to undergo epithelial-mesenchymal transformation and migration to the heart via pharyngeal arches 3, 4 and 6.

Microlissencephaly Microcephaly combined with lissencephaly

Microlissencephaly (MLIS) is a rare congenital brain disorder that combines severe microcephaly with lissencephaly. Microlissencephaly is a heterogeneous disorder, i.e. it has many different causes and a variable clinical course. Microlissencephaly is a malformation of cortical development (MCD) that occurs due to failure of neuronal migration between the third and fifth month of gestation as well as stem cell population abnormalities. Numerous genes have been found to be associated with microlissencephaly, however, the pathophysiology is still not completely understood.

References

  1. Etchevers, Heather C.; Amiel, Jeanne; Lyonnet, Stanislas (2006). "Molecular Bases of Human Neurocristopathies". Neural Crest Induction and Differentiation, Volume 589 . Advances in Experimental Medicine and Biology. 589. pp.  213–34. doi:10.1007/978-0-387-46954-6_14. ISBN   978-0-387-35136-0. PMID   17076285.
  2. Vega-Lopez, Guillermo A.; Cerrizuela, Santiago; Tribulo, Celeste; Aybar, Manuel J. (May 2018). "Neurocristopathies: New insights 150 years after the neural crest discovery". Developmental Biology. 444: S110–S143. doi: 10.1016/j.ydbio.2018.05.013 . ISSN   0012-1606. PMID   29802835.
  3. Bolande, Robert P. (1974). "The neurocristopathies: A unifying concept of disease arising in neural crest maldevelopment". Human Pathology. 5 (4): 409–29. doi:10.1016/S0046-8177(74)80021-3.
  4. Watt, Kristin E. Noack; Trainor, Paul A. (2014), "Neurocristopathies", Neural Crest Cells, Elsevier, pp. 361–394, doi:10.1016/b978-0-12-401730-6.00018-1, ISBN   9780124017306
  5. Cerrizuela, Santiago; Vega‐Lopez, Guillermo A.; Aybar, Manuel J. (2020). "The role of teratogens in neural crest development". Birth Defects Research. 112 (8): 584–632. doi:10.1002/bdr2.1644. ISSN   2472-1727. PMID   31926062. S2CID   210151171.
  6. Vega-Lopez, Guillermo A.; Cerrizuela, Santiago; Tribulo, Celeste; Aybar, Manuel J. (May 2018). "Neurocristopathies: New insights 150 years after the neural crest discovery". Developmental Biology. 444: S110–S143. doi: 10.1016/j.ydbio.2018.05.013 . ISSN   0012-1606. PMID   29802835.
  7. Behan, Peter O.; Chaudhuri, Abhijit (2010). "The sad plight of multiple sclerosis research (low on fact, high on fiction): Critical data to support it being a neurocristopathy". Inflammopharmacology. 18 (6): 265–90. doi:10.1007/s10787-010-0054-4. PMID   20862553. S2CID   11711382.