New Breeding Techniques

Last updated

New Breeding Techniques (NBT), also named New Plant Engineering Techniques, are a suite of methods that could increase and accelerate the development of new traits in plant breeding. [1] These new techniques, often involve 'genome editing' whose intention is to modify DNA at specific locations within the plants' genes so that new traits and properties are produced in crop plants.

Contents

An ongoing discussion in many countries is as to whether NBTs should be included within the same pre-existing governmental regulations to control genetic modification. [2] [3] [4] [5] [6] [7] [8]

Methods involved

New breeding techniques (NBTs) make specific changes within plant DNA in order to change its traits, and these modifications can vary in scale from altering single base, to inserting or removing one or more genes. [3] The various methods of achieving these changes in traits include the following: [3]

Potential benefits and disbenefits

Many European environmental organisations came together in 2016 to jointly express serious concerns over new breeding techniques.

Regulation

OECD

The Organization for Economic Cooperation and Development (OECD) has its own 'Working Group on Harmonization of Regulatory Oversight in Biotechnology' but, as at 2015, there had been virtually no progress in addressing issues around NBTs, and this includes many major food-producing countries like Russia, South Africa, Brazil, Peru, Mexico, China, Japan and India. Despite its huge potential importance for trade and agriculture, as well as potential risks, the majority of food producing countries in the world at that date still had no policies or protocols for regulating or analysing food products derived specifically from new breeding techniques. [4]

South America

Argentina introduced regulations and protocols affecting NBTs. These were in place by 2015 and gave clarity to plant developers at an early stage so they could anticipate whether or not their products were likely to be regarded as GMOs. The protocols conform to the internationally recognised 2003 Cartagena Protocol on Biosafety. [4]

North America

United States

The United States Department of Agriculture is responsible for determining whether food products derived from NBTs should be regulated, and this is undertaken on a case-by-case manner under the US Plant Protection Act. As of 2015 there was no specific policy towards NBTs, although in the summer of that year the White House announced plans to update the U.S. Regulatory Framework for Biotechnology. [4] [10]

Canada

Canada's food regulatory system differs from those of most other countries, and its procedures already accommodate products from any breeding technique, including NBTs. This is because its 1993 'Biotechnology Regulatory Framework' is based upon a concept of regulatory triggering based upon "Plants with Novel Traits". In other words, if a new trait does not exist within normal cultivated plant populations in Canada, then no matter how it was developed, it will trigger the normal regulatory processes and testing. [4]

See also

Related Research Articles

<span class="mw-page-title-main">Biotechnology</span> Use of living systems and organisms to develop or make useful products

Biotechnology is a multidisciplinary field that involves the integration of natural sciences and engineering sciences in order to achieve the application of organisms and parts thereof for products and services.

<span class="mw-page-title-main">Genetically modified organism</span> Organisms whose genetic material has been altered using genetic engineering methods

A genetically modified organism (GMO) is any organism whose genetic material has been altered using genetic engineering techniques. The exact definition of a genetically modified organism and what constitutes genetic engineering varies, with the most common being an organism altered in a way that "does not occur naturally by mating and/or natural recombination". A wide variety of organisms have been genetically modified (GM), including animals, plants, and microorganisms.

<span class="mw-page-title-main">Genetic engineering</span> Manipulation of an organisms genome

Genetic engineering, also called genetic modification or genetic manipulation, is the modification and manipulation of an organism's genes using technology. It is a set of technologies used to change the genetic makeup of cells, including the transfer of genes within and across species boundaries to produce improved or novel organisms.

Agricultural biotechnology, also known as agritech, is an area of agricultural science involving the use of scientific tools and techniques, including genetic engineering, molecular markers, molecular diagnostics, vaccines, and tissue culture, to modify living organisms: plants, animals, and microorganisms. Crop biotechnology is one aspect of agricultural biotechnology which has been greatly developed upon in recent times. Desired trait are exported from a particular species of Crop to an entirely different species. These transgene crops possess desirable characteristics in terms of flavor, color of flowers, growth rate, size of harvested products and resistance to diseases and pests.

<span class="mw-page-title-main">Genetically modified food</span> Foods produced from organisms that have had changes introduced into their DNA

Genetically modified foods, also known as genetically engineered foods, or bioengineered foods are foods produced from organisms that have had changes introduced into their DNA using various methods of genetic engineering. Genetic engineering techniques allow for the introduction of new traits as well as greater control over traits when compared to previous methods, such as selective breeding and mutation breeding.

The term modifications in genetics refers to both naturally occurring and engineered changes in DNA. Incidental, or natural mutations occur through errors during replication and repair, either spontaneously or due to environmental stressors. Intentional modifications are done in a laboratory for various purposes, developing hardier seeds and plants, and increasingly to treat human disease. The use of gene editing technology remains controversial.

<span class="mw-page-title-main">Genetically modified crops</span> Plants used in agriculture

Genetically modified crops are plants used in agriculture, the DNA of which has been modified using genetic engineering methods. Plant genomes can be engineered by physical methods or by use of Agrobacterium for the delivery of sequences hosted in T-DNA binary vectors. In most cases, the aim is to introduce a new trait to the plant which does not occur naturally in the species. Examples in food crops include resistance to certain pests, diseases, environmental conditions, reduction of spoilage, resistance to chemical treatments, or improving the nutrient profile of the crop. Examples in non-food crops include production of pharmaceutical agents, biofuels, and other industrially useful goods, as well as for bioremediation.

<span class="mw-page-title-main">Genetically modified food controversies</span>

Genetically modified food controversies are disputes over the use of foods and other goods derived from genetically modified crops instead of conventional crops, and other uses of genetic engineering in food production. The disputes involve consumers, farmers, biotechnology companies, governmental regulators, non-governmental organizations, and scientists. The key areas of controversy related to genetically modified food are whether such food should be labeled, the role of government regulators, the objectivity of scientific research and publication, the effect of genetically modified crops on health and the environment, the effect on pesticide resistance, the impact of such crops for farmers, and the role of the crops in feeding the world population. In addition, products derived from GMO organisms play a role in the production of ethanol fuels and pharmaceuticals.

<span class="mw-page-title-main">Gene targeting</span> Genetic technique that uses homologous recombination to change an endogenous gene

Gene targeting is a biotechnological tool used to change the DNA sequence of an organism. It is based on the natural DNA-repair mechanism of Homology Directed Repair (HDR), including Homologous Recombination. Gene targeting can be used to make a range of sizes of DNA edits, from larger DNA edits such as inserting entire new genes into an organism, through to much smaller changes to the existing DNA such as a single base-pair change. Gene targeting relies on the presence of a repair template to introduce the user-defined edits to the DNA. The user will design the repair template to contain the desired edit, flanked by DNA sequence corresponding (homologous) to the region of DNA that the user wants to edit; hence the edit is targeted to a particular genomic region. In this way Gene Targeting is distinct from natural homology-directed repair, during which the ‘natural’ DNA repair template of the sister chromatid is used to repair broken DNA. The alteration of DNA sequence in an organism can be useful in both a research context – for example to understand the biological role of a gene – and in biotechnology, for example to alter the traits of an organism.

<span class="mw-page-title-main">Plant genetics</span> Study of genes and heredity in plants

Plant genetics is the study of genes, genetic variation, and heredity specifically in plants. It is generally considered a field of biology and botany, but intersects frequently with many other life sciences and is strongly linked with the study of information systems. Plant genetics is similar in many ways to animal genetics but differs in a few key areas.

<span class="mw-page-title-main">Genetically modified animal</span> Animal that has been genetically modified

Genetically modified animals are animals that have been genetically modified for a variety of purposes including producing drugs, enhancing yields, increasing resistance to disease, etc. The vast majority of genetically modified animals are at the research stage while the number close to entering the market remains small.

Genetically modified canola is a genetically modified crop. The first strain, Roundup Ready canola, was developed by Monsanto for tolerance to glyphosate, the active ingredient in the commonly used herbicide Roundup.

<span class="mw-page-title-main">Plant breeding</span> Humans changing traits, ornamental/crops

Plant breeding is the science of changing the traits of plants in order to produce desired characteristics. It has been used to improve the quality of nutrition in products for humans and animals. The goals of plant breeding are to produce crop varieties that boast unique and superior traits for a variety of applications. The most frequently addressed agricultural traits are those related to biotic and abiotic stress tolerance, grain or biomass yield, end-use quality characteristics such as taste or the concentrations of specific biological molecules and ease of processing.

<span class="mw-page-title-main">Regulation of genetic engineering</span>

The regulation of genetic engineering varies widely by country. Countries such as the United States, Canada, Lebanon and Egypt use substantial equivalence as the starting point when assessing safety, while many countries such as those in the European Union, Brazil and China authorize GMO cultivation on a case-by-case basis. Many countries allow the import of GM food with authorization, but either do not allow its cultivation or have provisions for cultivation, but no GM products are yet produced. Most countries that do not allow for GMO cultivation do permit research. Most (85%) of the world's GMO crops are grown in the Americas. One of the key issues concerning regulators is whether GM products should be labeled. Labeling of GMO products in the marketplace is required in 64 countries. Labeling can be mandatory up to a threshold GM content level or voluntary. A study investigating voluntary labeling in South Africa found that 31% of products labeled as GMO-free had a GM content above 1.0%. In Canada and the US labeling of GM food is voluntary, while in Europe all food or feed which contains greater than 0.9% of approved GMOs must be labelled.

Genetic engineering in the European Union has varying degrees of regulation.

<span class="mw-page-title-main">Genome editing</span> Type of genetic engineering

Genome editing, or genome engineering, or gene editing, is a type of genetic engineering in which DNA is inserted, deleted, modified or replaced in the genome of a living organism. Unlike early genetic engineering techniques that randomly inserts genetic material into a host genome, genome editing targets the insertions to site-specific locations. The basic mechanism involved in genetic manipulations through programmable nucleases is the recognition of target genomic loci and binding of effector DNA-binding domain (DBD), double-strand breaks (DSBs) in target DNA by the restriction endonucleases, and the repair of DSBs through homology-directed recombination (HDR) or non-homologous end joining (NHEJ).

<span class="mw-page-title-main">History of genetic engineering</span>

Genetic engineering is the science of manipulating genetic material of an organism. The concept of genetic engineering was first proposed by Nikolay Timofeev-Ressovsky in 1934. The first artificial genetic modification accomplished using biotechnology was transgenesis, the process of transferring genes from one organism to another, first accomplished by Herbert Boyer and Stanley Cohen in 1973. It was the result of a series of advancements in techniques that allowed the direct modification of the genome. Important advances included the discovery of restriction enzymes and DNA ligases, the ability to design plasmids and technologies like polymerase chain reaction and sequencing. Transformation of the DNA into a host organism was accomplished with the invention of biolistics, Agrobacterium-mediated recombination and microinjection. The first genetically modified animal was a mouse created in 1974 by Rudolf Jaenisch. In 1976 the technology was commercialised, with the advent of genetically modified bacteria that produced somatostatin, followed by insulin in 1978. In 1983 an antibiotic resistant gene was inserted into tobacco, leading to the first genetically engineered plant. Advances followed that allowed scientists to manipulate and add genes to a variety of different organisms and induce a range of different effects. Plants were first commercialized with virus resistant tobacco released in China in 1992. The first genetically modified food was the Flavr Savr tomato marketed in 1994. By 2010, 29 countries had planted commercialized biotech crops. In 2000 a paper published in Science introduced golden rice, the first food developed with increased nutrient value.

<span class="mw-page-title-main">Genetically modified tree</span> Tree whose DNA has been modified using genetic engineering techniques

A genetically modified tree is a tree whose DNA has been modified using genetic engineering techniques. In most cases the aim is to introduce a novel trait to the plant which does not occur naturally within the species. Examples include resistance to certain pests, diseases, environmental conditions, and herbicide tolerance, or the alteration of lignin levels in order to reduce pulping costs.

Biotechnology risk is a form of existential risk from biological sources, such as genetically engineered biological agents. The release of such high-consequence pathogens could be

Genetic engineering in North America is any genetic engineering activities in North America

References

  1. Lusser M, Parisi C, Rodriguez Cerezo E, Plan D (18 October 2011). "New plant breeding techniques. State-of-the-art and prospects for commercial development. Publications Office of the European Union". Publications Office. doi:10.2791/54761.{{cite journal}}: Cite journal requires |journal= (help)
  2. Steinbrecher RA (December 2015). "Genetic Engineering in Plants and the "New Breeding Techniques (NBTs)" Inherent risks and the need to regulate" (PDF). EcoNexus.
  3. 1 2 3 "POST Note 548: New Plant Breeding Techniques" (PDF). UK Houses of Parliament. February 2017. Retrieved 6 January 2018.
  4. 1 2 3 4 5 Whelan AI, Lema MA (2015). "Regulatory framework for gene editing and other new breeding techniques (NBTs) in Argentina". GM Crops & Food. 6 (4): 253–65. doi:10.1080/21645698.2015.1114698. PMC   5033209 . PMID   26552666.
  5. "Food derived using new breeding techniques - review". www.foodstandards.gov.au. Food Standards Australia New Zealand (FSANZ). December 2017. Retrieved 2018-01-06.
  6. Tanaka Y (2017-10-02). "Major Psychological Factors Affecting Acceptance of New Breeding Techniques for Crops". Journal of International Food & Agribusiness Marketing. 29 (4): 366–382. doi:10.1080/08974438.2017.1382417. ISSN   0897-4438. S2CID   158443076.
  7. Paul H, Bücking E, Steinbrecher R (4 April 2017). "'New Breeding Techniques' and synthetic biology - genetic engineering by another name". The Ecologist. Retrieved 2018-01-06.
  8. Callaway, E (25 July 2018). "CRISPR plants now subject to tough GM laws in European Union". Nature.
  9. "Genetically modified organisms: new plant growing methods - GOV.UK". www.gov.uk. Advisory Committee on Releases to the Environment. 18 July 2013. Retrieved 2018-01-06.
  10. Matz M, Hahn R (9 July 2015). "The White House Announces Plans to Update the U.S. Regulatory Framework for Biotechnology". www.ofwlaw.com. Retrieved 6 January 2018.

Further reading