Nimo tube

Last updated
Digits of a BA0000-P31 Tube, showing burn-in of the number 0 Nimo1.gif
Digits of a BA0000-P31 Tube, showing burn-in of the number 0

Nimo was the trademark of a family of small cathode-ray tube (CRTs) used for numerical displays. They were manufactured by Industrial Electronic Engineers (IEE) around the mid-1960s. The tube had ten electron guns with stencils that shaped the electron beam as digits. [1] [2]

Contents

Details

The Nimo tube operated on a similar principle as the charactron, but used a much simpler design. They were intended as single digit, simple displays, or as four or six digits by means of a special horizontal magnetic deflection system. Having only three electrode types (a filament, an anode and ten different grids), the driving circuit for this tube was very simple, and as the image was projected on the glass face, it allowed a much wider viewing angle than, for example, Nixie tubes, which Nimo tried to replace. [3]

The tube required 1750 volts direct current (DC) for the anode and also required 1.1 volts for the filaments, as well as a cathode bias for the filaments that enables or disables the display of a character on a specific tube. This allows the display tubes to be multiplexed, simplifying the interface circuitry. [4]

The German tube manufacturer Telefunken tried to sell an unlicensed copy of the design under the type number XM1000, [5] but was sued by IEE in 1969 and lost, having to destroy all tubes already produced. Only a few survived, most of them not yet labeled. [6]

IEE also offered a version of the Nimo tube that could show 4 digits at the same time, and had plans for a 6 digit version. [7] The Nimo 64/Nimo 6500 had 64 electron guns with 64 different characters and could show 5 lines of text with 8 characters per line. It was available in 3 variants: EBCDIC, ASCII and Universal which had non-standard characters. [8] [9]

See also

Related Research Articles

<span class="mw-page-title-main">Cathode-ray tube</span> Vacuum tube often used to display images

A cathode-ray tube (CRT) is a vacuum tube containing one or more electron guns, which emit electron beams that are manipulated to display images on a phosphorescent screen. The images may represent electrical waveforms on an oscilloscope, a frame of video on an analog television set (TV), digital raster graphics on a computer monitor, or other phenomena like radar targets. A CRT in a TV is commonly called a picture tube. CRTs have also been used as memory devices, in which case the screen is not intended to be visible to an observer. The term cathode ray was used to describe electron beams when they were first discovered, before it was understood that what was emitted from the cathode was a beam of electrons.

<span class="mw-page-title-main">Cathode ray</span> Beam of electrons observed in vacuum tubes

Cathode rays or electron beams (e-beam) are streams of electrons observed in discharge tubes. If an evacuated glass tube is equipped with two electrodes and a voltage is applied, glass behind the positive electrode is observed to glow, due to electrons emitted from the cathode. They were first observed in 1859 by German physicist Julius Plücker and Johann Wilhelm Hittorf, and were named in 1876 by Eugen Goldstein Kathodenstrahlen, or cathode rays. In 1897, British physicist J. J. Thomson showed that cathode rays were composed of a previously unknown negatively charged particle, which was later named the electron. Cathode-ray tubes (CRTs) use a focused beam of electrons deflected by electric or magnetic fields to render an image on a screen.

<span class="mw-page-title-main">Cathode</span> Electrode where reduction takes place

A cathode is the electrode from which a conventional current leaves a polarized electrical device. This definition can be recalled by using the mnemonic CCD for Cathode Current Departs. A conventional current describes the direction in which positive charges move. Electrons have a negative electrical charge, so the movement of electrons is opposite to that of the conventional current flow. Consequently, the mnemonic cathode current departs also means that electrons flow into the device's cathode from the external circuit. For example, the end of a household battery marked with a + (plus) is the cathode.

<span class="mw-page-title-main">Cavity magnetron</span> Device for generating microwaves

The cavity magnetron is a high-power vacuum tube used in early radar systems and subsequently in microwave ovens and in linear particle accelerators. A cavity magnetron generates microwaves using the interaction of a stream of electrons with a magnetic field, while moving past a series of cavity resonators, which are small, open cavities in a metal block. Electrons pass by the cavities and cause microwaves to oscillate within, similar to the functioning of a whistle producing a tone when excited by an air stream blown past its opening. The resonant frequency of the arrangement is determined by the cavities' physical dimensions. Unlike other vacuum tubes, such as a klystron or a traveling-wave tube (TWT), the magnetron cannot function as an amplifier for increasing the intensity of an applied microwave signal; the magnetron serves solely as an electronic oscillator generating a microwave signal from direct current electricity supplied to the vacuum tube.

<span class="mw-page-title-main">Triode</span> Single-grid amplifying vacuum tube having three active electrodes

A triode is an electronic amplifying vacuum tube consisting of three electrodes inside an evacuated glass envelope: a heated filament or cathode, a grid, and a plate (anode). Developed from Lee De Forest's 1906 Audion, a partial vacuum tube that added a grid electrode to the thermionic diode, the triode was the first practical electronic amplifier and the ancestor of other types of vacuum tubes such as the tetrode and pentode. Its invention helped make amplified radio technology and long-distance telephony possible. Triodes were widely used in consumer electronics devices such as radios and televisions until the 1970s, when transistors replaced them. Today, their main remaining use is in high-power RF amplifiers in radio transmitters and industrial RF heating devices. In recent years there has been a resurgence in demand for low power triodes due to renewed interest in tube-type audio systems by audiophiles who prefer the sound of tube-based electronics.

<span class="mw-page-title-main">Vacuum tube</span> Device that controls current between electrodes

A vacuum tube, electron tube, valve, or tube, is a device that controls electric current flow in a high vacuum between electrodes to which an electric potential difference has been applied.

<span class="mw-page-title-main">Nixie tube</span> Electronic numeric display device

A Nixie tube, or cold cathode display, is an electronic device used for displaying numerals or other information using glow discharge.

<span class="mw-page-title-main">Cold cathode</span> Type of electrode and part of cold cathode fluorescent lamp.

A cold cathode is a cathode that is not electrically heated by a filament. A cathode may be considered "cold" if it emits more electrons than can be supplied by thermionic emission alone. It is used in gas-discharge lamps, such as neon lamps, discharge tubes, and some types of vacuum tube. The other type of cathode is a hot cathode, which is heated by electric current passing through a filament. A cold cathode does not necessarily operate at a low temperature: it is often heated to its operating temperature by other methods, such as the current passing from the cathode into the gas.

<span class="mw-page-title-main">Thyratron</span> Gas-filled tube, electrical switch, rectifier

A thyratron is a type of gas-filled tube used as a high-power electrical switch and controlled rectifier. Thyratrons can handle much greater currents than similar hard-vacuum tubes. Electron multiplication occurs when the gas becomes ionized, producing a phenomenon known as Townsend discharge. Gases used include mercury vapor, xenon, neon, and hydrogen. Unlike a vacuum tube (valve), a thyratron cannot be used to amplify signals linearly.

Pro Electron or EECA is the European type designation and registration system for active components.

<span class="mw-page-title-main">Vacuum fluorescent display</span> Display used in consumer electronics

A vacuum fluorescent display (VFD) is a display device once commonly used on consumer electronics equipment such as video cassette recorders, car radios, and microwave ovens.

<span class="mw-page-title-main">Seven-segment display</span> Form of electronic display device for displaying decimal numerals

A seven-segment display is a form of electronic display device for displaying decimal numerals that is an alternative to the more complex dot matrix displays.

<span class="mw-page-title-main">X-ray tube</span> Vacuum tube that converts electrical input power into X-rays

An X-ray tube is a vacuum tube that converts electrical input power into X-rays. The availability of this controllable source of X-rays created the field of radiography, the imaging of partly opaque objects with penetrating radiation. In contrast to other sources of ionizing radiation, X-rays are only produced as long as the X-ray tube is energized. X-ray tubes are also used in CT scanners, airport luggage scanners, X-ray crystallography, material and structure analysis, and for industrial inspection.

<span class="mw-page-title-main">Charactron</span>

Charactron was a U.S. registered trademark of Consolidated Vultee Aircraft Corporation (Convair) for its shaped electron beam cathode ray tube. Charactron CRTs performed functions of both a display device and a read-only memory storing multiple characters and fonts. The similar Typotron was a U.S. registered trademark of Hughes Aircraft Corporation for its type of shaped electron beam storage tube with a direct-view bistable storage screen.

In Europe, the principal method of numbering vacuum tubes was the nomenclature used by the Philips company and its subsidiaries Mullard in the UK, Valvo(deit) in Germany, Radiotechnique (Miniwatt-Dario brand) in France, and Amperex in the United States, from 1934 on. Adhering manufacturers include AEG (de), CdL (1921, French Mazda brand), CIFTE (fr, Mazda-Belvu brand), EdiSwan (British Mazda brand), Lorenz (de), MBLE(frnl), RCA (us), RFT(desv) (de), Siemens (de), Telefunken (de), Tesla (cz), Toshiba (ja), Tungsram (hu), and Unitra. This system allocated meaningful codes to tubes based on their function and became the starting point for the Pro Electron naming scheme for active devices.

<span class="mw-page-title-main">Magic eye tube</span> Visual indicator of the amplitude of an electronic signal

A magic eye tube or tuning indicator, in technical literature called an electron-ray indicator tube, is a vacuum tube which gives a visual indication of the amplitude of an electronic signal, such as an audio output, radio-frequency signal strength, or other functions. The magic eye is a specific type of such a tube with a circular display similar to the EM34 illustrated. Its first broad application was as a tuning indicator in radio receivers, to give an indication of the relative strength of the received radio signal, to show when a radio station was properly tuned in.

<span class="mw-page-title-main">Noise generator</span> Circuit that produces electrical noise

A noise generator is a circuit that produces electrical noise. Noise generators are used to test signals for measuring noise figure, frequency response, and other parameters. Noise generators are also used for generating random numbers.

<span class="mw-page-title-main">Beam deflection tube</span> Vacuum tube with an electron beam deflectable to one of two anodes

Beam deflection tubes, sometimes known as sheet beam tubes, are vacuum tubes with an electron gun, a beam intensity control grid, a screen grid, sometimes a suppressor grid, and two electrostatic deflection electrodes on opposite sides of the electron beam that can direct the rectangular beam to either of two anodes in the same plane.

<span class="mw-page-title-main">Industrial Electronic Engineers</span> American electronics company

Industrial Electronic Engineers, Inc. is an American electronics company based in Van Nuys, California. Founded by Donald Gumpertz in 1946, the company is best known for its electronic displays, becoming a pioneer in the field under Gumpertz's leadership.

References

  1. Electronic Design. Hayden Publishing Company. 1971.
  2. EEE. Mactier Publishing Corporation. July 1968.
  3. "IEE: Nimo 10-gun readout data sheet" (PDF). Archived (PDF) from the original on 25 October 2007. Retrieved 24 May 2013.
  4. "Nimo display tubes catalog no 808, March 1969" (PDF). Archived (PDF) from the original on 2023-04-21. Retrieved 2018-10-27.
  5. "Telefunken: Elektronenstrahl-Ziffernanzeigeröhre XM1000 data sheet" (PDF). Archived (PDF) from the original on 21 April 2023. Retrieved 24 May 2013.
  6. "Ziffern- und Zeichenanzeigen - Die XM 1000" [Digit and character display – The XM 1000] (in German). Archived from the original on 21 April 2023. Retrieved 3 March 2019.
  7. "Archived copy" (PDF). Archived (PDF) from the original on 2024-02-03. Retrieved 2024-02-08.{{cite web}}: CS1 maint: archived copy as title (link)
  8. "Archived copy". Archived from the original on 2021-10-22. Retrieved 2024-02-08.{{cite web}}: CS1 maint: archived copy as title (link)
  9. "Archived copy" (PDF). Archived (PDF) from the original on 2020-11-29. Retrieved 2024-02-08.{{cite web}}: CS1 maint: archived copy as title (link)