Niosome

Last updated
Schematic representation of a niosome prepared by sorbitan monostearate (Span-60) Schematic 2.jpg
Schematic representation of a niosome prepared by sorbitan monostearate (Span-60)

Niosomes are vesicles composed of non-ionic surfactants, incorporating cholesterol as an excipient. [1] Niosomes are utilized for drug delivery to specific sites to achieve desired therapeutic effects. [2] Structurally, niosomes are similar to liposomes as both consist of a lipid bilayer. However, niosomes are more stable than liposomes during formation processes and storage. [3] Niosomes trap hydrophilic and lipophilic drugs, either in an aqueous compartment (for hydrophilic drugs) [4] or in a vesicular membrane compartment composed of lipid material (for lipophilic drugs). [3]

Contents

Structure

Niosomes are microscopic lamellar structures formed by non-ionic surfactants and cholesterol. They exhibit a bilayer structure, with hydrophilic ends facing outward and hydrophobic ends facing inward. Their unique structure makes them ideal for diverse applications, notably in drug delivery systems. Niosomes excel in encapsulating both hydrophilic and hydrophobic drugs, enhancing drug stability and bioavailability. They are adaptable for tailored drug release and have garnered interest across pharmaceuticals, cosmetics, and agriculture for their biocompatibility and versatile properties. [5]

Methods of preparation

Various methods used to prepare liposomes are also suitable for niosome preparation, [1] such as the ether injection method, the handshaking method, the reverse phase evaporation method, the trans-membrane pH gradient method, the "bubble" method, the microfluidization method, formation from proteasomes, [5] the thin-film hydration method, the heating method, the freeze and thaw method, and the dehydration-rehydration method.

Uses

Niosomes are used as biodegradable and non-immunogenic drug delivery compounds, [6] as they have a low toxicity risk in biological systems. [7] They can also be used to entrap hydrophilic pharmaceuticals within aqueous compartments [4] or lipophilic drugs into vesicular bilayer membranes. Niosomes shield drug molecules from the biological environment, which can be utilized to improve the therapeutic performance of various drug molecules. Additionally, they can be used in a sustained drug delivery system to more directly affect target cells and delay clearance from circulation. [7] [4] Niosomes are used in a variety of applications, including gene delivery, [8] [9] drug targeting, [4] antineoplastic treatment, [10] [11] delivery of peptide drugs, carriers for hemoglobin, transdermal drug delivery systems, [12] and cosmetics. [13] They are also being studied for their potential use as a treatment for different forms of leishmaniasis [14]

Related Research Articles

<span class="mw-page-title-main">Phospholipid</span> Class of lipids

Phospholipids are a class of lipids whose molecule has a hydrophilic "head" containing a phosphate group and two hydrophobic "tails" derived from fatty acids, joined by an alcohol residue. Marine phospholipids typically have omega-3 fatty acids EPA and DHA integrated as part of the phospholipid molecule. The phosphate group can be modified with simple organic molecules such as choline, ethanolamine or serine.

<span class="mw-page-title-main">Lipid bilayer</span> Membrane of two layers of lipid molecules

The lipid bilayer is a thin polar membrane made of two layers of lipid molecules. These membranes are flat sheets that form a continuous barrier around all cells. The cell membranes of almost all organisms and many viruses are made of a lipid bilayer, as are the nuclear membrane surrounding the cell nucleus, and membranes of the membrane-bound organelles in the cell. The lipid bilayer is the barrier that keeps ions, proteins and other molecules where they are needed and prevents them from diffusing into areas where they should not be. Lipid bilayers are ideally suited to this role, even though they are only a few nanometers in width, because they are impermeable to most water-soluble (hydrophilic) molecules. Bilayers are particularly impermeable to ions, which allows cells to regulate salt concentrations and pH by transporting ions across their membranes using proteins called ion pumps.

<span class="mw-page-title-main">Micelle</span> Group of fatty molecules suspended in liquid by soaps and/or detergents

A micelle or micella is an aggregate of surfactant amphipathic lipid molecules dispersed in a liquid, forming a colloidal suspension. A typical micelle in water forms an aggregate with the hydrophilic "head" regions in contact with surrounding solvent, sequestering the hydrophobic single-tail regions in the micelle centre.

<span class="mw-page-title-main">Liposome</span> Composite structures made of phospholipids and may contain small amounts of other molecules

A liposome is a small artificial vesicle, spherical in shape, having at least one lipid bilayer. Due to their hydrophobicity and/or hydrophilicity, biocompatibility, particle size and many other properties, liposomes can be used as drug delivery vehicles for administration of pharmaceutical drugs and nutrients, such as lipid nanoparticles in mRNA vaccines, and DNA vaccines. Liposomes can be prepared by disrupting biological membranes.

<span class="mw-page-title-main">Amphiphile</span> Hydrophilic and lipophilic chemical compound

An amphiphile, or amphipath, is a chemical compound possessing both hydrophilic and lipophilic (fat-loving) properties. Such a compound is called amphiphilic or amphipathic. Amphiphilic compounds include surfactants. The phospholipid amphiphiles are the major structural component of cell membranes.

<span class="mw-page-title-main">Dipalmitoylphosphatidylcholine</span> Chemical compound

Dipalmitoylphosphatidylcholine (DPPC) is a phospholipid (and a lecithin) consisting of two C16 palmitic acid groups attached to a phosphatidylcholine head-group.

<span class="mw-page-title-main">Cationic liposome</span>

Cationic liposomes are spherical structures that contain positively charged lipids. Cationic liposomes can vary in size between 40 nm and 500 nm, and they can either have one lipid bilayer (monolamellar) or multiple lipid bilayers (multilamellar). The positive charge of the phospholipids allows cationic liposomes to form complexes with negatively charged nucleic acids through ionic interactions. Upon interacting with nucleic acids, cationic liposomes form clusters of aggregated vesicles. These interactions allow cationic liposomes to condense and encapsulate various therapeutic and diagnostic agents in their aqueous compartment or in their lipid bilayer. These cationic liposome-nucleic acid complexes are also referred to as lipoplexes. Due to the overall positive charge of cationic liposomes, they interact with negatively charged cell membranes more readily than classic liposomes. This positive charge can also create some issues in vivo, such as binding to plasma proteins in the bloodstream, which leads to opsonization. These issues can be reduced by optimizing the physical and chemical properties of cationic liposomes through their lipid composition. Cationic liposomes are increasingly being researched for use as delivery vectors in gene therapy due to their capability to efficiently transfect cells. A common application for cationic liposomes is cancer drug delivery.

Targeted drug delivery, sometimes called smart drug delivery, is a method of delivering medication to a patient in a manner that increases the concentration of the medication in some parts of the body relative to others. This means of delivery is largely founded on nanomedicine, which plans to employ nanoparticle-mediated drug delivery in order to combat the downfalls of conventional drug delivery. These nanoparticles would be loaded with drugs and targeted to specific parts of the body where there is solely diseased tissue, thereby avoiding interaction with healthy tissue. The goal of a targeted drug delivery system is to prolong, localize, target and have a protected drug interaction with the diseased tissue. The conventional drug delivery system is the absorption of the drug across a biological membrane, whereas the targeted release system releases the drug in a dosage form. The advantages to the targeted release system is the reduction in the frequency of the dosages taken by the patient, having a more uniform effect of the drug, reduction of drug side-effects, and reduced fluctuation in circulating drug levels. The disadvantage of the system is high cost, which makes productivity more difficult, and the reduced ability to adjust the dosages.

<span class="mw-page-title-main">Transdermal</span> Method of drug administration

Transdermal is a route of administration wherein active ingredients are delivered across the skin for systemic distribution. Examples include transdermal patches used for medicine delivery. The drug is administered in the form of a patch or ointment that delivers the drug into the circulation for systemic effect.

<span class="mw-page-title-main">Solid lipid nanoparticle</span> Novel drug delivery system

Lipid nanoparticles (LNPs) are nanoparticles composed of lipids. They are a novel pharmaceutical drug delivery system, and a novel pharmaceutical formulation. LNPs as a drug delivery vehicle were first approved in 2018 for the siRNA drug Onpattro. LNPs became more widely known in late 2020, as some COVID-19 vaccines that use RNA vaccine technology coat the fragile mRNA strands with PEGylated lipid nanoparticles as their delivery vehicle.

<span class="mw-page-title-main">Peptide amphiphile</span>

Peptide amphiphiles (PAs) are peptide-based molecules that self-assemble into supramolecular nanostructures including; spherical micelles, twisted ribbons, and high-aspect-ratio nanofibers. A peptide amphiphile typically comprises a hydrophilic peptide sequence attached to a lipid tail, i.e. a hydrophobic alkyl chain with 10 to 16 carbons. Therefore, they can be considered a type of lipopeptide. A special type of PA, is constituted by alternating charged and neutral residues, in a repeated pattern, such as RADA16-I. The PAs were developed in the 1990s and the early 2000s and could be used in various medical areas including: nanocarriers, nanodrugs, and imaging agents. However, perhaps their main potential is in regenerative medicine to culture and deliver cells and growth factors.

Buccal administration is a topical route of administration by which drugs held or applied in the buccal area diffuse through the oral mucosa and enter directly into the bloodstream. Buccal administration may provide better bioavailability of some drugs and a more rapid onset of action compared to oral administration because the medication does not pass through the digestive system and thereby avoids first pass metabolism. Drug forms for buccal administration include tablets and thin films.

Nanoparticles for drug delivery to the brain is a method for transporting drug molecules across the blood–brain barrier (BBB) using nanoparticles. These drugs cross the BBB and deliver pharmaceuticals to the brain for therapeutic treatment of neurological disorders. These disorders include Parkinson's disease, Alzheimer's disease, schizophrenia, depression, and brain tumors. Part of the difficulty in finding cures for these central nervous system (CNS) disorders is that there is yet no truly efficient delivery method for drugs to cross the BBB. Antibiotics, antineoplastic agents, and a variety of CNS-active drugs, especially neuropeptides, are a few examples of molecules that cannot pass the BBB alone. With the aid of nanoparticle delivery systems, however, studies have shown that some drugs can now cross the BBB, and even exhibit lower toxicity and decrease adverse effects throughout the body. Toxicity is an important concept for pharmacology because high toxicity levels in the body could be detrimental to the patient by affecting other organs and disrupting their function. Further, the BBB is not the only physiological barrier for drug delivery to the brain. Other biological factors influence how drugs are transported throughout the body and how they target specific locations for action. Some of these pathophysiological factors include blood flow alterations, edema and increased intracranial pressure, metabolic perturbations, and altered gene expression and protein synthesis. Though there exist many obstacles that make developing a robust delivery system difficult, nanoparticles provide a promising mechanism for drug transport to the CNS.

A unilamellar liposome is a spherical liposome, a vesicle, bounded by a single bilayer of an amphiphilic lipid or a mixture of such lipids, containing aqueous solution inside the chamber. Unilamellar liposomes are used to study biological systems and to mimic cell membranes, and are classified into three groups based on their size: small unilamellar liposomes/vesicles (SUVs) that with a size range of 20–100 nm, large unilamellar liposomes/vesicles (LUVs) with a size range of 100–1000 nm and giant unilamellar liposomes/vesicles (GUVs) with a size range of 1–200 µm. GUVs are mostly used as models for biological membranes in research work. Animal cells are 10–30 µm and plant cells are typically 10–100 µm. Even smaller cell organelles such as mitochondria are typically 1–2 µm. Therefore, a proper model should account for the size of the specimen being studied. In addition, the size of vesicles dictates their membrane curvature which is an important factor in studying fusion proteins. SUVs have a higher membrane curvature and vesicles with high membrane curvature can promote membrane fusion faster than vesicles with lower membrane curvature such as GUVs.

Nanoparticle drug delivery systems are engineered technologies that use nanoparticles for the targeted delivery and controlled release of therapeutic agents. The modern form of a drug delivery system should minimize side-effects and reduce both dosage and dosage frequency. Recently, nanoparticles have aroused attention due to their potential application for effective drug delivery.

Topical drug delivery (TDD) is a route of drug administration that allows the topical formulation to be delivered across the skin upon application, hence producing a localized effect to treat skin disorders like eczema. The formulation of topical drugs can be classified into corticosteroids, antibiotics, antiseptics, and anti-fungal. The mechanism of topical delivery includes the diffusion and metabolism of drugs in the skin. Historically, topical route was the first route of medication used to deliver drugs in humans in ancient Egyptian and Babylonian in 3000 BCE. In these ancient cities, topical medications like ointments and potions were used on the skin. The delivery of topical drugs needs to pass through multiple skin layers and undergo pharmacokinetics, hence factor like dermal diseases minimize the bioavailability of the topical drugs. The wide use of topical drugs leads to the advancement in topical drug delivery. These advancements are used to enhance the delivery of topical medications to the skin by using chemical and physical agents. For chemical agents, carriers like liposomes and nanotechnologies are used to enhance the absorption of topical drugs. On the other hand, physical agents, like micro-needles is other approach for enhancement ofabsorption. Besides using carriers, other factors such as pH, lipophilicity, and drug molecule size govern the effectiveness of topical formulation.

<span class="mw-page-title-main">Wetting solution</span> Chemical

Wetting solutions are liquids containing active chemical compounds that minimise the distance between two immiscible phases by lowering the surface tension to induce optimal spreading. The two phases, known as an interface, can be classified into five categories, namely, solid-solid, solid-liquid, solid-gas, liquid-liquid and liquid-gas.

<span class="mw-page-title-main">Liposome extruder</span> Lab equipment

A liposome extruder is a device that prepares cell membranes, exosomes and also generates nanoscale liposome formulations. The liposome extruder employs the track-etched membrane to filter huge particles and achieve sterile filtration.

<span class="mw-page-title-main">Invasomes</span> Transdermal drug delivery method

An invasome are a type of artificial vesicle nanocarrier that transport substances through the skin, the most superficial biological barrier. Vesicles are small particles surrounded by a lipid layer that can carry substances into and out of the cell. Artificial vesicles can be engineered to deliver drugs within the cell, with specific applications within transdermal drug delivery. However, the skin proves to be a barrier to effective penetration and delivery of drug therapies. Thus, invasomes are a new generation of vesicle with added structural components to assist with skin penetration.

Immunoliposome therapy is a targeted drug delivery method that involves the use of liposomes – artificial lipid bilayer vesicles – coupled with monoclonal antibodies – bind to a single epitope on a specific antigen – to deliver therapeutic agents to specific sites or tissues in the body. The antibody modified liposomes target tissue through cell-specific antibodies with release of therapeutics contained in the assimilated liposomes. Immunoliposome therapy is integrated into the broader ecosystem of drug delivery and therapeutic interventions, with its roles aligning with the pursuit of tailored medical treatments and the addressing of challenges related to drug stability, personalized treatment, and drug efficacy. This form of therapy has been used to engineer immune properties for targeting specific cells, protecting encapsulated drugs from degradation to enhance stability, facilitating sustained release of drugs, personalizing medicine based on individual patient biomarkers, and, overall, attempting to advance current traditional cancer treatment.

References

  1. 1 2 3 Moghassemi S, Hadjizadeh A (July 2014). "Nano-niosomes as nanoscale drug delivery systems: an illustrated review". Journal of Controlled Release. 185: 22–36. doi:10.1016/j.jconrel.2014.04.015. PMID   24747765.
  2. "Drug Delivery Systems (definition)". www.reference.md. Retrieved 2021-04-20.
  3. 1 2 Ge X, Wei M, He S, Yuan WE (January 2019). "Advances of Non-Ionic Surfactant Vesicles (Niosomes) and Their Application in Drug Delivery". Pharmaceutics. 11 (2): 55. doi: 10.3390/pharmaceutics11020055 . PMC   6410054 . PMID   30700021.
  4. 1 2 3 4 Kazi KM, Mandal AS, Biswas N, Guha A, Chatterjee S, Behera M, Kuotsu K (October 2010). "Niosome: A future of targeted drug delivery systems". Journal of Advanced Pharmaceutical Technology & Research. 1 (4): 374–380. doi: 10.4103/0110-5558.76435 . PMC   3255404 . PMID   22247876.
  5. 1 2 Mehta A (26 December 2010). "Niosomes". Pharmaxchange.
  6. Chidambaram SB, Ray B, Bhat A, Mahalakshmi AM, Sunanda T, Jagadeeswari P, Gowrav MP, Chandra R, Sakharkar MK (2020). "Chapter 5: Mitochondria-targeted drug delivery in neurodegenerative diseases: 5.3 Niosomes". In Shegokar R (ed.). Delivery of Drugs. Elsevier. pp. 97–117 (105–106). doi:10.1016/B978-0-12-817776-1.00005-5. ISBN   978-0-12-817776-1. S2CID   243021998.
  7. 1 2 Bruschi ML, ed. (2015). "Chapter 6: Drug delivery systems: 6.8 Niosomes". Strategies to Modify the Drug Release from Pharmaceutical Systems. Elsevier. pp. 87–194 (147–150). doi:10.1016/B978-0-08-100092-2.00006-0. ISBN   978-0-08-100092-2.
  8. Moghassemi S, Hadjizadeh A (July 2014). "Nano-niosomes as nanoscale drug delivery systems: an illustrated review". Journal of Controlled Release. 185: 22–36. doi:10.1016/j.jconrel.2014.04.015. PMID   24747765.
  9. Puras G, Mashal M, Zárate J, Agirre M, Ojeda E, Grijalvo S, et al. (January 2014). "A novel cationic niosome formulation for gene delivery to the retina". Journal of Controlled Release. 174: 27–36. doi:10.1016/j.jconrel.2013.11.004. PMID   24231407.
  10. Moghtaderi, Maryam; Sedaghatnia, Kamand; Bourbour, Mahsa; Fatemizadeh, Mahdi; Salehi Moghaddam, Zahra; Hejabi, Faranak; Heidari, Fatemeh; Quazi, Sameer; Farasati Far, Bahareh (2022-09-29). "Niosomes: a novel targeted drug delivery system for cancer". Medical Oncology. 39 (12): 240. doi:10.1007/s12032-022-01836-3. ISSN   1559-131X.
  11. Bashkeran, Thaaranni; Kamaruddin, Azlina Harun; Ngo, Trung Xuan; Suda, Kazuma; Umakoshi, Hiroshi; Watanabe, Nozomi; Nadzir, Masrina Mohd (2023-08-01). "Niosomes in cancer treatment: A focus on curcumin encapsulation". Heliyon. 9 (8): e18710. doi: 10.1016/j.heliyon.2023.e18710 . ISSN   2405-8440. PMC   10428065 .
  12. Aggarwal G, Goel A, Dhawan S, Shama A (2010). "Carriers/vesicles based approaches for penetration enhancement in transdermal drug delivery". Latest Review. 8 (1): 1–5.
  13. US 4830857,Handjani RM, Ribier A, Vanlerberghe G, Zabotto A, Griat J,"Cosmetic and pharmaceutical compositions containing niosomes and a water-soluble polyamide, and a process for preparing these compositions",issued 16 May 1989, assigned to L'Oréal
  14. Mostafavi M, Khazaeli P, Sharifi I, Farajzadeh S, Sharifi H, Keyhani A, et al. (February 2019). "A Novel Niosomal Combination of Selenium Coupled with Glucantime against Leishmania tropica". The Korean Journal of Parasitology. 57 (1): 1–8. doi:10.3347/kjp.2019.57.1.1. PMC   6409218 . PMID   30840792.