Nominal analogue blanking

Last updated

Nominal analogue blanking is the outermost part of the overscan of a standard definition digital television image. It consists of a gap of black (or nearly black) pixels at the left and right sides, which correspond to the end and start of the horizontal blanking interval: the front porch at the right side (the end of a line, before the sync pulse), and the back porch at the left side (the start of a line, after the sync pulse and before drawing the next line). Digital television ordinarily contains 720 pixels per line, but only 702 (PAL) to 704 (NTSC) of them contain picture content. The location is variable, since analogue equipment may shift the picture sideways in an unexpected amount or direction.

The exact width is determined by taking the definition of the time required for an active line in PAL or NTSC, and multiplying it by the pixel clock of 13.5 MHz of Digital SDTV. PAL is exactly 52 μs, so it will equate to exactly 702 pixels.[ citation needed ]

Notably, screen shapes and aspect ratios were defined in an era of purely analogue broadcasting for TV. This means that any picture with nominal analogue blanking, whether it be 702, around 704, or less, will be — by definition — a 4:3 picture. Therefore, when cross-converting into a square-pixel environment (like MPEG-4 and its variants), this width must always scale to 768 (PAL) or 640 (NTSC). This has the outcome of causing a full picture of 720x576 or 720x480 to be wider than 4:3. In fact, a purely digitally sourced SDTV image, with no analogue blanking, will be close to 788 × 576 or 655 × 480 once stretched to square pixels.[ citation needed ]

Standard definition widescreen pictures were also defined in an analogue environment and must also be treated as such. This means that a purely digitally sourced widescreen SDTV image, with no analogue blanking, will be close to 1050 × 576 or 873 × 480.[ citation needed ]

For details, see the technical specifications of overscan amounts.

Related Research Articles

<span class="mw-page-title-main">Analog television</span> Television that uses analog signals

Analog television is the original television technology that uses analog signals to transmit video and audio. In an analog television broadcast, the brightness, colors and sound are represented by amplitude, phase and frequency of an analog signal.

<span class="mw-page-title-main">MPEG-2</span> Video encoding standard

MPEG-2 is a standard for "the generic coding of moving pictures and associated audio information". It describes a combination of lossy video compression and lossy audio data compression methods, which permit storage and transmission of movies using currently available storage media and transmission bandwidth. While MPEG-2 is not as efficient as newer standards such as H.264/AVC and H.265/HEVC, backwards compatibility with existing hardware and software means it is still widely used, for example in over-the-air digital television broadcasting and in the DVD-Video standard.

<span class="mw-page-title-main">NTSC</span> Analog television system

NTSC is the first American standard for analog television, published in 1941. In 1961, it was assigned the designation System M. It is also known as EIA standard 170.

<span class="mw-page-title-main">PAL</span> Colour encoding system for analogue television

Phase Alternating Line (PAL) is a colour encoding system for analog television. It was one of three major analogue colour television standards, the others being NTSC and SECAM. In most countries it was broadcast at 625 lines, 50 fields per second, and associated with CCIR analogue broadcast television systems B, D, G, H, I or K. The articles on analog broadcast television systems further describe frame rates, image resolution, and audio modulation.

<span class="mw-page-title-main">Standard-definition television</span> Digital TV with similar definition to analog broadcasts

Standard-definition television is a television system that uses a resolution that is not considered to be either high or enhanced definition. Standard refers to offering a similar resolution to the analog broadcast systems used when it was introduced.

<span class="mw-page-title-main">Rec. 601</span> Standard from the International Telecommunication Union

ITU-R Recommendation BT.601, more commonly known by the abbreviations Rec. 601 or BT.601, is a standard originally issued in 1982 by the CCIR for encoding interlaced analog video signals in digital video form. It includes methods of encoding 525-line 60 Hz and 625-line 50 Hz signals, both with an active region covering 720 luminance samples and 360 chrominance samples per line. The color encoding system is known as YCbCr 4:2:2.

Enhanced-definition television, or extended-definition television (EDTV) is a Consumer Electronics Association (CEA) marketing shorthand term for certain digital television (DTV) formats and devices. Specifically, this term defines an extension of the standard-definition television (SDTV) format that enables a clearer picture during high-motion scenes compared to previous iterations of SDTV, but not producing images as detailed as high-definition television (HDTV).

Anamorphic widescreen is a process by which a comparatively wide widescreen image is horizontally compressed to fit into a storage medium with a narrower aspect ratio, reducing the horizontal resolution of the image while keeping its full original vertical resolution. Compatible play-back equipment can then expand the horizontal dimension to show the original widescreen image. This is typically used to allow one to store widescreen images on a medium that was originally intended for a narrower ratio, while using as much of the frame – and therefore recording as much detail – as possible.

<span class="mw-page-title-main">Display resolution</span> Width and height of a display in pixels

The display resolution or display modes of a digital television, computer monitor, or other display device is the number of distinct pixels in each dimension that can be displayed. It can be an ambiguous term especially as the displayed resolution is controlled by different factors in cathode ray tube (CRT) displays, flat-panel displays and projection displays using fixed picture-element (pixel) arrays.

PALplus is an analogue television broadcasting system aimed to improve and enhance the PAL format by allowing 16:9 aspect ratio broadcasts, while remaining compatible with existing television receivers, defined by International Telecommunication Union (ITU) recommendation BT.1197-1. Introduced in 1993, it followed experiences with the HD-MAC and D2-MAC, hybrid analogue-digital widescreen formats that were incompatible with PAL receivers. It was developed at the University of Dortmund in Germany, in cooperation with German terrestrial broadcasters and European and Japanese manufacturers. The system had some adoption across Europe during the late 1990s and helped introduce widescreen TVs in the market, but never became mainstream.

<span class="mw-page-title-main">480i</span> Standard-definition video mode

480i is the video mode used for standard-definition digital video in the Caribbean, Japan, South Korea, Taiwan, Philippines, Myanmar, Western Sahara, and most of the Americas. The other common standard definition digital standard, used in the rest of the world, is 576i.

<span class="mw-page-title-main">576i</span> Standard-definition video mode

576i is a standard-definition digital video mode, originally used for digitizing analogue television in most countries of the world where the utility frequency for electric power distribution is 50 Hz. Because of its close association with the legacy colour encoding systems, it is often referred to as PAL, PAL/SECAM or SECAM when compared to its 60 Hz NTSC-colour-encoded counterpart, 480i.

576p is the shorthand name for a video display resolution. The p stands for progressive scan, i.e. non-interlaced, the 576 for a vertical resolution of 576 pixels. Usually it corresponds to a digital video mode with a 4:3 anamorphic resolution of 720x576 and a frame rate of 25 frames per second (576p25), and thus using the same bandwidth and carrying the same amount of pixel data as 576i, but other resolutions and frame rates are possible.

Overscan is a behaviour in certain television sets in which part of the input picture is cut off by the visible bounds of the screen. It exists because cathode-ray tube (CRT) television sets from the 1930s to the early 2000s were highly variable in how the video image was positioned within the borders of the screen. It then became common practice to have video signals with black edges around the picture, which the television was meant to discard in this way.

Horizontal blanking interval refers to a part of the process of displaying images on a computer monitor or television screen via raster scanning. CRT screens display images by moving beams of electrons very quickly across the screen. Once the beam of the monitor has reached the edge of the screen, it is switched off, and the deflection circuit voltages are returned to the values they had for the other edge of the screen; this would have the effect of retracing the screen in the opposite direction, so the beam is turned off during this time. This part of the line display process is the Horizontal Blank.

<span class="mw-page-title-main">Pixel aspect ratio</span> Proportion between the width and the height of a pixel

A Pixel aspect ratio is a mathematical ratio that describes how the width of a pixel in a digital image compared to the height of that pixel.

<span class="mw-page-title-main">IRE (unit)</span>

The IRE unit is used in the measurement of composite video signals. Its name is derived from the initials of the Institute of Radio Engineers.

<span class="mw-page-title-main">Rec. 709</span> Standard for HDTV image encoding and signal characteristics

Rec. 709, also known as Rec.709, BT.709, and ITU 709, is a standard developed by ITU-R for image encoding and signal characteristics of high-definition television.

The following outline is provided as an overview of and topical guide to television broadcasting:

Clear-Vision is a Japanese EDTV television system introduced in the 1990s, that improves audio and video quality while remaining compatible with the existing broadcast standard. Developed to improve analog NTSC, it adds features like progressive scan, ghost cancellation and widescreen image format. A similar system named PALPlus was develop in Europe with the goal of improving analog PAL broadcasts.

References

See also