NuA4 histone acetyltransferase complex

Last updated
Identifiers
SymbolNuA4
Pfam PF09340
InterPro IPR015418
Available protein structures:
Pfam   structures / ECOD  
PDB RCSB PDB; PDBe; PDBj
PDBsum structure summary
PDB PDB: 8esc 1myu 1n6t

The NuA4 histone acetyltransferase complex is a protein complex that has histone acetylase activity on chromatin, as well as ATPase, DNA helicase and structural DNA binding activities. The complex is thought to be involved in double-strand DNA break repair. Subunits of the human complex include HTATIP/TIP60, TRRAP, RUVBL1, RUVBL2, beta-actin and BAF53/ACTL6A. In yeast, the complex has 13 subunits, including the catalytic subunit Esa1 (homologous to human Tip60). [1]

Post-translational acetylation of the histone H4 N-terminal tail in chromatin has been associated with several nuclear processes including transcription. Purification and characterization of a native multi-subunit complex (NuA4) from yeast that acetylates nucleosomal histone H4 have been reported. NuA4 has an apparent molecular mass of 1.3 MDa. All four conserved lysines of histone H4 can be acetylated by NuA4. The catalytic subunit of the complex has been identified as the product of ESA1, an essential gene required for cell cycle progression in yeast. Antibodies against Esa1p specifically immunoprecipitate NuA4 activity whereas the complex purified from a temperature-sensitive esa1 mutant loses its acetyltransferase activity at the restrictive temperature. Additionally, another subunit of the complex has been identified as the product of TRA1, an ATM-related essential gene homologous to human TRRAP, an essential cofactor for c-Myc- and E2F-mediated oncogenic transformation. Finally, the ability of NuA4 to stimulate GAL4–VP16-driven transcription from chromatin templates in vitro is also lost in the temperature-sensitive esa1 mutant. The function of the essential Esa1 protein as the HAT subunit of NuA4 and the presence of Tra1p, a putative [[transcription]] activator-interacting subunit, supports an essential link between nuclear H4 acetylation, transcriptional regulation and cell cycle control. [2] [3]

Related Research Articles

<span class="mw-page-title-main">Histone acetyltransferase</span> Enzymes that catalyze acyl group transfer from acetyl-CoA to histones

Histone acetyltransferases (HATs) are enzymes that acetylate conserved lysine amino acids on histone proteins by transferring an acetyl group from acetyl-CoA to form ε-N-acetyllysine. DNA is wrapped around histones, and, by transferring an acetyl group to the histones, genes can be turned on and off. In general, histone acetylation increases gene expression.

<span class="mw-page-title-main">Histone deacetylase</span> Class of enzymes important in regulating DNA transcription

Histone deacetylases (EC 3.5.1.98, HDAC) are a class of enzymes that remove acetyl groups (O=C-CH3) from an ε-N-acetyl lysine amino acid on both histone and non-histone proteins. HDACs allow histones to wrap the DNA more tightly. This is important because DNA is wrapped around histones, and DNA expression is regulated by acetylation and de-acetylation. HDAC's action is opposite to that of histone acetyltransferase. HDAC proteins are now also called lysine deacetylases (KDAC), to describe their function rather than their target, which also includes non-histone proteins.

<span class="mw-page-title-main">Coactivator (genetics)</span>

A coactivator is a type of transcriptional coregulator that binds to an activator to increase the rate of transcription of a gene or set of genes. The activator contains a DNA binding domain that binds either to a DNA promoter site or a specific DNA regulatory sequence called an enhancer. Binding of the activator-coactivator complex increases the speed of transcription by recruiting general transcription machinery to the promoter, therefore increasing gene expression. The use of activators and coactivators allows for highly specific expression of certain genes depending on cell type and developmental stage.

<span class="mw-page-title-main">PCAF</span> Protein-coding gene in the species Homo sapiens

P300/CBP-associated factor (PCAF), also known as K(lysine) acetyltransferase 2B (KAT2B), is a human gene and transcriptional coactivator associated with p53.

<span class="mw-page-title-main">Histone acetylation and deacetylation</span>

Histone acetylation and deacetylation are the processes by which the lysine residues within the N-terminal tail protruding from the histone core of the nucleosome are acetylated and deacetylated as part of gene regulation.

Chromatin remodeling is the dynamic modification of chromatin architecture to allow access of condensed genomic DNA to the regulatory transcription machinery proteins, and thereby control gene expression. Such remodeling is principally carried out by 1) covalent histone modifications by specific enzymes, e.g., histone acetyltransferases (HATs), deacetylases, methyltransferases, and kinases, and 2) ATP-dependent chromatin remodeling complexes which either move, eject or restructure nucleosomes. Besides actively regulating gene expression, dynamic remodeling of chromatin imparts an epigenetic regulatory role in several key biological processes, egg cells DNA replication and repair; apoptosis; chromosome segregation as well as development and pluripotency. Aberrations in chromatin remodeling proteins are found to be associated with human diseases, including cancer. Targeting chromatin remodeling pathways is currently evolving as a major therapeutic strategy in the treatment of several cancers.

<span class="mw-page-title-main">Transformation/transcription domain-associated protein</span> Protein-coding gene in the species Homo sapiens

Transformation/transcription domain-associated protein, also known as TRRAP, is a protein that in humans is encoded by the TRRAP gene. TRRAP belongs to the phosphatidylinositol 3-kinase-related kinase protein family.

<span class="mw-page-title-main">KAT2A</span> Protein-coding gene in the species Homo sapiens

Histone acetyltransferase KAT2A is an enzyme that in humans is encoded by the KAT2A gene.

<span class="mw-page-title-main">KAT5</span> Protein-coding gene in the species Homo sapiens

Histone acetyltransferase KAT5 is an enzyme that in humans is encoded by the KAT5 gene. It is also commonly identified as TIP60.

<span class="mw-page-title-main">TAF5L</span> Protein-coding gene in the species Homo sapiens

TAF5-like RNA polymerase II p300/CBP-associated factor-associated factor 65 kDa subunit 5L is an enzyme that in humans is encoded by the TAF5L gene.

<span class="mw-page-title-main">BLOC1S1</span> Protein-coding gene in the species Homo sapiens

Biogenesis of lysosome-related organelles complex 1 subunit 1 is a protein that in humans is encoded by the BLOC1S1 gene.

Reptin is a tumor repressor protein that is a member of the ATPases Associated with various cellular Activities (AAA+) helicase family and regulates KAI1. Desumoylation of reptin alters the repressive function of reptin and its association with HDAC1. The sumoylation status of reptin modulates the invasive activity of cancer cells with metastatic potential. Reptin was reported in 2010 to be a good marker for metastasis. Another name for reptin, RuvB-like 2 comes from its similarity to RuvB, an ATP-dependent helicase found in bacteria. Reptin is highly conserved, being found in yeast, drosophila, and humans. It presents itself as a member of a number of different protein complexes, most of which function in chromatin modification, including PRC1, TIP60/NuA4 and INO80. Hence, it also has the names INO80J, TIP48, and TIP49B. In the majority of its functions, reptin is paired with a very similar protein, pontin (RUVBL1).

Protein acetylation are acetylation reactions that occur within living cells as drug metabolism, by enzymes in the liver and other organs. Pharmaceuticals frequently employ acetylation to enable such esters to cross the blood–brain barrier, where they are deacetylated by enzymes (carboxylesterases) in a manner similar to acetylcholine. Examples of acetylated pharmaceuticals are diacetylmorphine (heroin), acetylsalicylic acid (aspirin), THC-O-acetate, and diacerein. Conversely, drugs such as isoniazid are acetylated within the liver during drug metabolism. A drug that depends on such metabolic transformations in order to act is termed a prodrug.

H3K27ac is an epigenetic modification to the DNA packaging protein histone H3. It is a mark that indicates acetylation of the lysine residue at N-terminal position 27 of the histone H3 protein.

Spt-Ada-Gcn5 acetyltransferase (SAGA) complex is a multicomponent regulator of acetylation. It has been found that this complex is highly conserved between different organisms, such as humans, Drosophila, and yeast. This 15 subunit complex has been best characterized for its histone acetyltransferase activity (HAT). The acetylating activity has been found to occur in the lysine residues of the N-terminal tails of H3 and H2 histones. It has been found recently that this activity is actually a deubiquitination of a monoubiquitin that occurs in residue Lys 123 of the H2b histone and the acetylation of the H3 histone. The histone acetylation is mediated by the GCN5 histone acetyl transferase, while the deubiquitinating activity is mediated by a deubiquitinating module (DUBm), which is composed of 4 proteins, Ubp8 ubiquitin hydrolase, Sgf11, Sus1, and Sgf73. This DUB module is an independently folding subcomplex that is connected to the C-terminal tail of Sgf 73, Sgf73, as well as Sus1, also have a role in facilitating SAGA complex's role in nuclear export by binding to components of the nuclear pore complex. Even though Ubp8 has ubiquitin specific hydrolase (USP) domain, the protein remains inactive unless it is in complex with the other 3 DUBm proteins.

H2BK5ac is an epigenetic modification to the DNA packaging protein Histone H2B. It is a mark that indicates the acetylation at the 5th lysine residue of the histone H2B protein. H2BK5ac is involved in maintaining stem cells and colon cancer.

H4K16ac is an epigenetic modification to the DNA packaging protein Histone H4. It is a mark that indicates the acetylation at the 16th lysine residue of the histone H4 protein.

H4K5ac is an epigenetic modification to the DNA packaging protein histone H4. It is a mark that indicates the acetylation at the 5th lysine residue of the histone H4 protein. H4K5 is the closest lysine residue to the N-terminal tail of histone H4. It is enriched at the transcription start site (TSS) and along gene bodies. Acetylation of histone H4K5 and H4K12ac is enriched at centromeres.

H3K36ac is an epigenetic modification to the DNA packaging protein Histone H3. It is a mark that indicates the acetylation at the 36th lysine residue of the histone H3 protein.

H3K56ac is an epigenetic modification to the DNA packaging protein Histone H3. It is a mark that indicates the acetylation at the 56th lysine residue of the histone H3 protein.

References

  1. "Gene Ontology Term: NuA4 histone acetyltransferase complex". Saccharomyces Genome Database.
  2. Allard S, Utley RT, Savard J, Clarke A, Grant P, Brandl CJ, Pillus L, Workman JL, Côté J (September 1999). "NuA4, an essential transcription adaptor/histone H4 acetyltransferase complex containing Esa1p and the ATM-related cofactor Tra1p". The EMBO Journal. 18 (18): 5108–19. doi:10.1093/emboj/18.18.5108. PMC   1171581 . PMID   10487762.
  3. Zukin, Stefan; Marunde, Matthew; Popova, Irina; Soczek, Katarzyna; Nogales, Eva; Patel, Avinash (October 2022). "Structure and flexibility of the yeast NuA4 histone acetyltransferase complex". eLife. doi:10.7554/eLife.81400. PMC   9643008 . PMID   36263929.