Oblique shock

Last updated
An oblique shock at the nose of a T-38 aircraft is made visible through Schlieren photography Shockwave pattern around a T-38C observed with Background-Oriented Schlieren photography (1).jpg
An oblique shock at the nose of a T-38 aircraft is made visible through Schlieren photography

An oblique shock wave is a shock wave that, unlike a normal shock, is inclined with respect to the direction of incoming air. It occurs when a supersonic flow encounters a corner that effectively turns the flow into itself and compresses. [1] The upstream streamlines are uniformly deflected after the shock wave. The most common way to produce an oblique shock wave is to place a wedge into supersonic, compressible flow. Similar to a normal shock wave, the oblique shock wave consists of a very thin region across which nearly discontinuous changes in the thermodynamic properties of a gas occur. While the upstream and downstream flow directions are unchanged across a normal shock, they are different for flow across an oblique shock wave.

Contents

It is always possible to convert an oblique shock into a normal shock by a Galilean transformation.

Wave theory

Supersonic flow encounters a wedge and is uniformly deflected forming an oblique shock. Obliqueshock.PNG
Supersonic flow encounters a wedge and is uniformly deflected forming an oblique shock.
This chart shows the oblique shock angle, b, as a function of the corner angle, th, for a few constant M1 lines. The red line separates the strong and weak solutions. The blue line represents the point when the downstream Mach number becomes sonic. The chart assumes
g
{\displaystyle \gamma }
=1.4, which is valid for an ideal diatomic gas. ObliqueShockAngleRelation.png
This chart shows the oblique shock angle, β, as a function of the corner angle, θ, for a few constant M1 lines. The red line separates the strong and weak solutions. The blue line represents the point when the downstream Mach number becomes sonic. The chart assumes =1.4, which is valid for an ideal diatomic gas.

For a given Mach number, M1, and corner angle, θ, the oblique shock angle, β, and the downstream Mach number, M2, can be calculated. Unlike after a normal shock where M2 must always be less than 1, in oblique shock M2 can be supersonic (weak shock wave) or subsonic (strong shock wave). Weak solutions are often observed in flow geometries open to atmosphere (such as on the outside of a flight vehicle). Strong solutions may be observed in confined geometries (such as inside a nozzle intake). Strong solutions are required when the flow needs to match the downstream high pressure condition. Discontinuous changes also occur in the pressure, density and temperature, which all rise downstream of the oblique shock wave.

The θ-β-M equation

Using the continuity equation and the fact that the tangential velocity component does not change across the shock, trigonometric relations eventually lead to the θ-β-M equation which shows θ as a function of M1, β and ɣ, where ɣ is the Heat capacity ratio. [2]

It is more intuitive to want to solve for β as a function of M1 and θ, but this approach is more complicated, the results of which are often contained in tables or calculated through a numerical method.

Maximum deflection angle

Within the θ-β-M equation, a maximum corner angle, θMAX, exists for any upstream Mach number. When θ > θMAX, the oblique shock wave is no longer attached to the corner and is replaced by a detached bow shock. A θ-β-M diagram, common in most compressible flow textbooks, shows a series of curves that will indicate θMAX for each Mach number. The θ-β-M relationship will produce two β angles for a given θ and M1, with the larger angle called a strong shock and the smaller called a weak shock. The weak shock is almost always seen experimentally.

The rise in pressure, density, and temperature after an oblique shock can be calculated as follows:

M2 is solved for as follows, where is the post-shock flow deflection angle:

Wave applications

Concorde intake ramp system Concorde Ramp.jpg
Concorde intake ramp system
F-14D Tomcat showing wedge-shaped intakes Grumman F-14 Tomcat 2.JPG
F-14D Tomcat showing wedge-shaped intakes

Oblique shocks are often preferable in engineering applications when compared to normal shocks. This can be attributed to the fact that using one or a combination of oblique shock waves results in more favourable post-shock conditions (smaller increase in entropy, less stagnation pressure loss, etc.) when compared to utilizing a single normal shock. An example of this technique can be seen in the design of supersonic aircraft engine intakes or supersonic inlets. A type of these inlets is wedge-shaped to compress air flow into the combustion chamber while minimizing thermodynamic losses. Early supersonic aircraft jet engine intakes were designed using compression from a single normal shock, but this approach caps the maximum achievable Mach number to roughly 1.6. Concorde (which first flew in 1969) used variable geometry wedge-shaped intakes to achieve a maximum speed of Mach 2.2. A similar design was used on the F-14 Tomcat (the F-14D was first delivered in 1994) and achieved a maximum speed of Mach 2.34.

Many supersonic aircraft wings are designed around a thin diamond shape. Placing a diamond-shaped object at an angle of attack relative to the supersonic flow streamlines will result in two oblique shocks propagating from the front tip over the top and bottom of the wing, with Prandtl-Meyer expansion fans created at the two corners of the diamond closest to the front tip. When correctly designed, this generates lift.

Waves and the hypersonic limit

As the Mach number of the upstream flow becomes increasingly hypersonic, the equations for the pressure, density, and temperature after the oblique shock wave reach a mathematical limit. The pressure and density ratios can then be expressed as:

For a perfect atmospheric gas approximation using γ = 1.4, the hypersonic limit for the density ratio is 6. However, hypersonic post-shock dissociation of O2 and N2 into O and N lowers γ, allowing for higher density ratios in nature. The hypersonic temperature ratio is:

See also

Related Research Articles

<span class="mw-page-title-main">Mach number</span> Ratio of speed of an object moving through fluid and local speed of sound

The Mach number, often only Mach, is a dimensionless quantity in fluid dynamics representing the ratio of flow velocity past a boundary to the local speed of sound. It is named after the Austrian physicist and philosopher Ernst Mach.

<span class="mw-page-title-main">Potential flow</span> Velocity field as the gradient of a scalar function

In fluid dynamics, potential flow or irrotational flow refers to a description of a fluid flow with no vorticity in it. Such a description typically arises in the limit of vanishing viscosity, i.e., for an inviscid fluid and with no vorticity present in the flow.

<span class="mw-page-title-main">Compressibility</span> Measure of the relative volume change of a fluid or solid as a response to a pressure change

In thermodynamics and fluid mechanics, the compressibility is a measure of the instantaneous relative volume change of a fluid or solid as a response to a pressure change. In its simple form, the compressibility may be expressed as

Compressible flow is the branch of fluid mechanics that deals with flows having significant changes in fluid density. While all flows are compressible, flows are usually treated as being incompressible when the Mach number is smaller than 0.3. The study of compressible flow is relevant to high-speed aircraft, jet engines, rocket motors, high-speed entry into a planetary atmosphere, gas pipelines, commercial applications such as abrasive blasting, and many other fields.

The Knudsen number (Kn) is a dimensionless number defined as the ratio of the molecular mean free path length to a representative physical length scale. This length scale could be, for example, the radius of a body in a fluid. The number is named after Danish physicist Martin Knudsen (1871–1949).

In fluid dynamics, the pressure coefficient is a dimensionless number which describes the relative pressures throughout a flow field. The pressure coefficient is used in aerodynamics and hydrodynamics. Every point in a fluid flow field has its own unique pressure coefficient, Cp.

Choked flow is a compressible flow effect. The parameter that becomes "choked" or "limited" is the fluid velocity.

Subsonic wind tunnels are used for operations at low Mach numbers, with speeds in the test section up to 480 km/h. They may be of open-return type or closed-return flow. These tunnels use large axial fans to move air and increase dynamic pressure, overcoming viscous losses. The design principles of subsonic wind tunnels are based on the continuity equation and Bernoulli's principle, which allow for the calculation of important parameters such as the tunnel's contraction ratio.

<span class="mw-page-title-main">Prandtl–Meyer expansion fan</span> Phenomenon in fluid dynamics

A supersonic expansion fan, technically known as Prandtl–Meyer expansion fan, a two-dimensional simple wave, is a centered expansion process that occurs when a supersonic flow turns around a convex corner. The fan consists of an infinite number of Mach waves, diverging from a sharp corner. When a flow turns around a smooth and circular corner, these waves can be extended backwards to meet at a point.

In fluid dynamics, a moving shock is a shock wave that is travelling through a fluid medium with a velocity relative to the velocity of the fluid already making up the medium. As such, the normal shock relations require modification to calculate the properties before and after the moving shock. A knowledge of moving shocks is important for studying the phenomena surrounding detonation, among other applications.

Fanno flow is the adiabatic flow through a constant area duct where the effect of friction is considered. Compressibility effects often come into consideration, although the Fanno flow model certainly also applies to incompressible flow. For this model, the duct area remains constant, the flow is assumed to be steady and one-dimensional, and no mass is added within the duct. The Fanno flow model is considered an irreversible process due to viscous effects. The viscous friction causes the flow properties to change along the duct. The frictional effect is modeled as a shear stress at the wall acting on the fluid with uniform properties over any cross section of the duct.

Shock is an abrupt discontinuity in the flow field and it occurs in flows when the local flow speed exceeds the local sound speed. More specifically, it is a flow whose Mach number exceeds 1.

A ratio distribution is a probability distribution constructed as the distribution of the ratio of random variables having two other known distributions. Given two random variables X and Y, the distribution of the random variable Z that is formed as the ratio Z = X/Y is a ratio distribution.

In aerodynamics, the normal shock tables are a series of tabulated data listing the various properties before and after the occurrence of a normal shock wave. With a given upstream Mach number, the post-shock Mach number can be calculated along with the pressure, density, temperature, and stagnation pressure ratios. Such tables are useful since the equations used to calculate the properties after a normal shock are cumbersome.

The term shock polar is generally used with the graphical representation of the Rankine–Hugoniot equations in either the hodograph plane or the pressure ratio-flow deflection angle plane. The polar itself is the locus of all possible states after an oblique shock. The shock polar was first introduced by Adolf Busemann in 1929.

<span class="mw-page-title-main">Isentropic expansion waves</span>

Isentropic expansion waves are created when a supersonic flow is redirected along a curved surface. These waves are studied to obtain a relation between deflection angle and Mach number. Each wave in this case is a Mach wave, so it is at an angle , where M is the Mach number immediately before the wave. Expansion waves are divergent because as the flow expands the value of Mach number increases, thereby decreasing the Mach angle.

Isentropic nozzle flow describes the movement of a gas or fluid through a narrowing opening without an increase or decrease in entropy.

In the field of mathematics known as complex analysis, the indicator function of an entire function indicates the rate of growth of the function in different directions.

Taylor–Maccoll flow refers to the steady flow behind a conical shock wave that is attached to a solid cone. The flow is named after G. I. Taylor and J. W. Maccoll, whom described the flow in 1933, guided by an earlier work of Theodore von Kármán.

The planar reentry equations are the equations of motion governing the unpowered reentry of a spacecraft, based on the assumptions of planar motion and constant mass, in an Earth-fixed reference frame.

References

  1. Hall, Nancy (13 May 2021). "Oblique Shock Waves". NASA . Retrieved 9 June 2024.
  2. "Archived copy" (PDF). Archived from the original (PDF) on 2012-10-21. Retrieved 2013-01-01.{{cite web}}: CS1 maint: archived copy as title (link)