Observational equivalence

Last updated

Observational equivalence is the property of two or more underlying entities being indistinguishable on the basis of their observable implications. Thus, for example, two scientific theories are observationally equivalent if all of their empirically testable predictions are identical, in which case empirical evidence cannot be used to distinguish which is closer to being correct; indeed, it may be that they are actually two different perspectives on one underlying theory.

In econometrics, two parameter values (or two structures, from among a class of statistical models) are considered observationally equivalent if they both result in the same probability distribution of observable data. [1] [2] [3] This term often arises in relation to the identification problem.

In macroeconomics, it happens when you have multiple structural models, with different interpretation, but indistinguishable empirically. "the mapping between structural parameters and the objective function may not display a unique minimum." [4]

In the formal semantics of programming languages, two terms M and N are observationally equivalent if and only if, in all contexts C[...] where C[M] is a valid term, it is the case that C[N] is also a valid term with the same value. Thus it is not possible, within the system, to distinguish between the two terms. This definition can be made precise only with respect to a particular calculus, one that comes with its own specific definitions of term, context, and the value of a term. The notion is due to James H. Morris, [5] who called it "extensional equivalence." [6]

See also

Related Research Articles

<span class="mw-page-title-main">Empirical research</span> Research using empirical evidence

Empirical research is research using empirical evidence. It is also a way of gaining knowledge by means of direct and indirect observation or experience. Empiricism values some research more than other kinds. Empirical evidence can be analyzed quantitatively or qualitatively. Quantifying the evidence or making sense of it in qualitative form, a researcher can answer empirical questions, which should be clearly defined and answerable with the evidence collected. Research design varies by field and by the question being investigated. Many researchers combine qualitative and quantitative forms of analysis to better answer questions that cannot be studied in laboratory settings, particularly in the social sciences and in education.

Lambda calculus is a formal system in mathematical logic for expressing computation based on function abstraction and application using variable binding and substitution. It is a universal model of computation that can be used to simulate any Turing machine. It was introduced by the mathematician Alonzo Church in the 1930s as part of his research into the foundations of mathematics.

In physical cosmology, the shape of the universe refers to both its local and global geometry. Local geometry is defined primarily by its curvature, while the global geometry is characterised by its topology. General relativity explains how spatial curvature is constrained by gravity. The global topology of the universe cannot be deduced from measurements of curvature inferred from observations within the family of homogeneous general relativistic models alone, due to the existence of locally indistinguishable spaces with varying global topological characteristics. For example; a multiply connected space like a 3 torus has everywhere zero curvature but is finite in extent, whereas a flat simply connected space is infinite in extent.

Construct validity concerns how well a set of indicators represent or reflect a concept that is not directly measurable. Construct validation is the accumulation of evidence to support the interpretation of what a measure reflects. Modern validity theory defines construct validity as the overarching concern of validity research, subsuming all other types of validity evidence such as content validity and criterion validity.

In statistical classification, two main approaches are called the generative approach and the discriminative approach. These compute classifiers by different approaches, differing in the degree of statistical modelling. Terminology is inconsistent, but three major types can be distinguished, following Jebara (2004):

  1. A generative model is a statistical model of the joint probability distribution on given observable variable X and target variable Y;
  2. A discriminative model is a model of the conditional probability of the target Y, given an observation x; and
  3. Classifiers computed without using a probability model are also referred to loosely as "discriminative".

In statistics, econometrics, epidemiology and related disciplines, the method of instrumental variables (IV) is used to estimate causal relationships when controlled experiments are not feasible or when a treatment is not successfully delivered to every unit in a randomized experiment. Intuitively, IVs are used when an explanatory variable of interest is correlated with the error term (endogenous), in which case ordinary least squares and ANOVA give biased results. A valid instrument induces changes in the explanatory variable but has no independent effect on the dependent variable and is not correlated with the error term, allowing a researcher to uncover the causal effect of the explanatory variable on the dependent variable.

Ciphertext indistinguishability is a property of many encryption schemes. Intuitively, if a cryptosystem possesses the property of indistinguishability, then an adversary will be unable to distinguish pairs of ciphertexts based on the message they encrypt. The property of indistinguishability under chosen plaintext attack is considered a basic requirement for most provably secure public key cryptosystems, though some schemes also provide indistinguishability under chosen ciphertext attack and adaptive chosen ciphertext attack. Indistinguishability under chosen plaintext attack is equivalent to the property of semantic security, and many cryptographic proofs use these definitions interchangeably.

Vector autoregression (VAR) is a statistical model used to capture the relationship between multiple quantities as they change over time. VAR is a type of stochastic process model. VAR models generalize the single-variable (univariate) autoregressive model by allowing for multivariate time series. VAR models are often used in economics and the natural sciences.

In mathematics, particularly in homotopy theory, a model category is a category with distinguished classes of morphisms ('arrows') called 'weak equivalences', 'fibrations' and 'cofibrations' satisfying certain axioms relating them. These abstract from the category of topological spaces or of chain complexes. The concept was introduced by Daniel G. Quillen.

Empirical modelling refers to any kind of (computer) modelling based on empirical observations rather than on mathematically describable relationships of the system modelled.

In economics and econometrics, the parameter identification problem arises when the value of one or more parameters in an economic model cannot be determined from observable variables. It is closely related to non-identifiability in statistics and econometrics, which occurs when a statistical model has more than one set of parameters that generate the same distribution of observations, meaning that multiple parameterizations are observationally equivalent.

Ramsey sentences are formal logical reconstructions of theoretical propositions attempting to draw a line between science and metaphysics. A Ramsey sentence aims at rendering propositions containing non-observable theoretical terms clear by substituting them with observational terms.

Structural estimation is a technique for estimating deep "structural" parameters of theoretical economic models. The term is inherited from the simultaneous equations model. Structural estimation is extensively using the equations from the economics theory, and in this sense is contrasted with "reduced form estimation" and other nonstructural estimations that study the statistical relationships between the observed variables while utilizing the economics theory very lightly. The idea of combining statistical and economic models dates to mid-20th century and work of the Cowles Commission.

In statistics, identifiability is a property which a model must satisfy for precise inference to be possible. A model is identifiable if it is theoretically possible to learn the true values of this model's underlying parameters after obtaining an infinite number of observations from it. Mathematically, this is equivalent to saying that different values of the parameters must generate different probability distributions of the observable variables. Usually the model is identifiable only under certain technical restrictions, in which case the set of these requirements is called the identification conditions.

In the philosophy of science, structuralism asserts that all aspects of reality are best understood in terms of empirical scientific constructs of entities and their relations, rather than in terms of concrete entities in themselves.

The methodology of econometrics is the study of the range of differing approaches to undertaking econometric analysis.

In economics, and in other social sciences, preference refers to an order by which an agent, while in search of an "optimal choice", ranks alternatives based on their respective utility. Preferences are evaluations that concern matters of value, in relation to practical reasoning. Individual preferences are determined by taste, need, ..., as opposed to price, availability or personal income. Classical economics assumes that people act in their best (rational) interest. In this context, rationality would dictate that, when given a choice, an individual will select an option that maximizes their self-interest. But preferences are not always transitive, both because real humans are far from always being rational and because in some situations preferences can form cycles, in which case there exists no well-defined optimal choice. An example of this is Efron dice.

In formal language theory, weak equivalence of two grammars means they generate the same set of strings, i.e. that the formal language they generate is the same. In compiler theory the notion is distinguished from strongequivalence, which additionally means that the two parse trees are reasonably similar in that the same semantic interpretation can be assigned to both.

In mathematics and mathematical logic, Boolean algebra is a branch of algebra. It differs from elementary algebra in two ways. First, the values of the variables are the truth values true and false, usually denoted 1 and 0, whereas in elementary algebra the values of the variables are numbers. Second, Boolean algebra uses logical operators such as conjunction (and) denoted as , disjunction (or) denoted as , and the negation (not) denoted as ¬. Elementary algebra, on the other hand, uses arithmetic operators such as addition, multiplication, subtraction, and division. Boolean algebra is therefore a formal way of describing logical operations, in the same way that elementary algebra describes numerical operations.

In statistics and econometrics, set identification extends the concept of identifiability in statistical models to environments where the model and the distribution of observable variables are not sufficient to determine a unique value for the model parameters, but instead constrain the parameters to lie in a strict subset of the parameter space. Statistical models that are set identified arise in a variety of settings in economics, including game theory and the Rubin causal model. Unlike approaches that deliver point-identification of the model parameters, methods from the literature on partial identification are used to obtain set estimates that are valid under weaker modelling assumptions.

References

  1. Dufour, Jean-Marie; Hsiao, Cheng (2008). "Identification". In Durlauf, Steven N.; Blume, Lawrence E. (eds.). The New Palgrave Dictionary of Economics (Second ed.).
  2. Stock, James H. (July 14, 2008). "Weak Instruments, Weak Identification, and Many Instruments, Part I" (PDF). National Bureau of Economic Research.
  3. Koopmans, Tjalling C. (1949). "Identification problems in economic model construction". Econometrica. 17 (2): 125–144. doi:10.2307/1905689. JSTOR   1905689.
  4. Canova, Fabio; Sala, Luca (May 2009). "Back to square one: Identification issues in DSGE models". Journal of Monetary Economics.
  5. Ghica, Dan R.; Muroya, Koko; Ambridge, Todd Waugh (2019). "Local Reasoning for Robust Observational Equivalence". p. 2. arXiv: 1907.01257 [cs.PL].
  6. Morris, James (1969). Programming languages and lambda calculus (Thesis). Massachusetts Institute of Technology. pp. 49–53. hdl:1721.1/64850.