Occam process

Last updated

The Occam process is a solder-free, Restriction of Hazardous Substances Directive (RoHS)-compliant method for use in the manufacturing of electronic circuit boards developed by Verdant Electronics. It combines the usual two steps of the construction of printed circuit boards (PCBs) followed by the population process of placing various leaded and non-leaded electronic components into one process.

Solder metal alloy used to join together metal pieces with higher melting points

Solder is a fusible metal alloy used to create a permanent bond between metal workpieces. The word solder comes from the Middle English word soudur, via Old French solduree and soulder, from the Latin solidare, meaning "to make solid". In fact, solder must first be melted in order to adhere to and connect the pieces together after cooling, which requires that an alloy suitable for use as solder have a lower melting point than the pieces being joined. The solder should also be resistant to oxidative and corrosive effects that would degrade the joint over time. Solder used in making electrical connections also needs to have favorable electrical characteristics.

The Restriction of Hazardous Substances Directive 2002/95/EC, (RoHS 1), short for Directive on the restriction of the use of certain hazardous substances in electrical and electronic equipment, was adopted in February 2003 by the European Union.

Printed circuit board board to support and connect electronic components

A printed circuit board (PCB) mechanically supports and electrically connects electronic components or electrical components using conductive tracks, pads and other features etched from one or more sheet layers of copper laminated onto and/or between sheet layers of a non-conductive substrate. Components are generally soldered onto the PCB to both electrically connect and mechanically fasten them to it.

Contents

The Occam process

Electronic components are first positioned onto an adhesive layer of a temporary or permanent substrate according to the customers needs and design parameters. Then, the pre-tested, burned-in components are held firm in their positions through encapsulating them in insulating material and the entire assembly is then inverted. The adhesive layer is then cut (after removing the temporary substrate if it exists) or drilled out over the component leads mechanically or by laser ablation. These holes are then plated with a conductive, copper connection (vias) from the top of this layer to the leads. If needed, other encapsulation layers of components or vias can be placed on top of each other to make multi-level circuit connections. This construction is then coated with copper where needed to provide traces. Thus, this finished circuit board can now receive a conformal coating to protect against the environment, and then be placed into an assembly housing or be sent to another section for mechanical and/or electrical connections with other PCBs. [1] [2]

Laser ablation process that removes material from an object by heating it with a laser

Laser ablation or photoablation is the process of removing material from a solid surface by irradiating it with a laser beam. At low laser flux, the material is heated by the absorbed laser energy and evaporates or sublimates. At high laser flux, the material is typically converted to a plasma. Usually, laser ablation refers to removing material with a pulsed laser, but it is possible to ablate material with a continuous wave laser beam if the laser intensity is high enough. Excimer lasers of deep ultra-violet light are mainly used in photoablation; the wavelength of laser used in photoablation is approximately 200 nm.

A via or VIA is an electrical connection between layers in a physical electronic circuit that goes through the plane of one or more adjacent layers. To ensure via robustness, IPC sponsored a round-robin exercise that developed a time to failure calculator.

Conformal coating material is a thin polymeric film which conforms to the contours of a printed circuit board to protect the board's components. Typically applied at 25-250 μm(micrometers) thickness, it is applied to electronic circuitry to protect against moisture, dust, chemicals, and temperature extremes.

The process was named in reference to a quotation from William of Ockham (1288–1348), who said, "It is vanity to do with more that which can be done with less." [3]

William of Ockham English medieval Franciscan friar and scholastic philosopher and theologian

William of Ockham was an English Franciscan friar and scholastic philosopher and theologian, who is believed to have been born in Ockham, a small village in Surrey. He is considered to be one of the major figures of medieval thought and was at the centre of the major intellectual and political controversies of the 14th century. He is commonly known for Occam's razor, the methodological principle that bears his name, and also produced significant works on logic, physics, and theology. In the Church of England, his day of commemoration is 10 April.

Main advantages

The 2006, European, RoHS regulations prompted the research needed to move from traditional lead-based solder connection processes to a more environmentally friendly approach. Much manufacturing is currently being done with tin-based solder to address this issue. Using tin requires much higher reflow temperatures and can result in rework stages due to electric shorts caused by tin-whiskers [4] (electrically conductive structures formed in this process) and other issues in the manufacturing process which are avoided by the Occam process. [2]

Whisker (metallurgy) Phenomenon in electrical devices

Metal whiskering is a phenomenon which occurs in electrical devices when metals form long whisker-like projections over time. Tin whiskers were noticed and documented in the vacuum tube era of electronics early in the 20th century in equipment that used pure, or almost pure, tin solder in their production. It was noticed that small metal hairs or tendrils grew between metal solder pads causing short circuits. Metal whiskers form in the presence of compressive stress. Zinc, cadmium, and even lead whiskers have been documented. Many techniques are used to mitigate the problem including changes to the annealing process, addition of elements like copper and nickel, and the inclusion of conformal coatings. Traditionally, lead was added to slow down whisker growth in tin-based solders.

PCB’s themselves are usually created by use of a phenolic resin, itself a corrosive, toxic substance completely removed from the Occam process. Also, the nitric acid or ferric chloride used to etch traces into the boards is also removed from the process.

Since the PCB and parts population stages happen in the same process in the same plant, a company would no longer need to wait for delivery of ordered PCB’s to begin manufacturing.

The high temperatures usually seen by PCB’s inside of a reflow soldering oven are avoided by use of this process. This means that any issue of moisture sensitivity (MSL) in components by outgassing of moisture is completely avoided. This also then removes the storage equipment and processes needed to keep the moisture levels low in more intricate and expensive chips.

Reflow soldering

Reflow soldering is a process in which a solder paste is used to temporarily attach one or thousands of tiny electrical components to their contact pads, after which the entire assembly is subjected to controlled heat. The solder paste reflows in a molten state, creating permanent solder joints. Heating may be accomplished by passing the assembly through a reflow oven or under an infrared lamp or by soldering individual joints [unconventionally] with a desoldering hot air pencil.

Main disadvantages

Currently though the process is set, it has not yet been implemented. It is defined as a “disruptive technology [5] requiring a complete change in current manufacturing processes. Therefore, cost concerns for manufacturers needing new equipment, labour concerns for current PCB manufactures and others will need to be solved or addressed before widespread adoption of this process.

Although many toxic chemicals are removed from the traditional process, Occam’s increased use of encapsulation by epoxy could mean more of that sort of waste. The usual additives in epoxy have been shown to mimic estrogen, possibly resulting in adverse hormonal responses in humans. [6]

Related Research Articles

Surface-mount technology method for producing electronic circuits

Surface-mount technology (SMT) is a method for producing electronic circuits in which the components are mounted or placed directly onto the surface of printed circuit boards (PCBs). An electronic device so made is called a surface-mount device (SMD). In industry, it has largely replaced the through-hole technology construction method of fitting components with wire leads into holes in the circuit board. Both technologies can be used on the same board, with the through-hole technology used for components not suitable for surface mounting such as large transformers and heat-sinked power semiconductors.

Flip chip, also known as controlled collapse chip connection or its abbreviation, C4, is a method for interconnecting semiconductor devices, such as IC chips and microelectromechanical systems (MEMS), to external circuitry with solder bumps that have been deposited onto the chip pads. The technique was developed by General Electric's Light Military Electronics Dept., Utica, N.Y. The solder bumps are deposited on the chip pads on the top side of the wafer during the final wafer processing step. In order to mount the chip to external circuitry, it is flipped over so that its top side faces down, and aligned so that its pads align with matching pads on the external circuit, and then the solder is reflowed to complete the interconnect. This is in contrast to wire bonding, in which the chip is mounted upright and wires are used to interconnect the chip pads to external circuitry.

A reflow oven is a machine used primarily for reflow soldering of surface mount electronic components to printed circuit boards (PCB).

Wave soldering

Wave soldering is a bulk soldering process used in the manufacture of printed circuit boards. The circuit board is passed over a pan of molten solder in which a pump produces an upwelling of solder that looks like a standing wave. As the circuit board makes contact with this wave, the components become soldered to the board. Wave soldering is used for both through-hole printed circuit assemblies, and surface mount. In the latter case, the components are glued onto the surface of a printed circuit board (PCB) by placement equipment, before being run through the molten solder wave. Wave soldering is mainly used in soldering of through hole components.

Rework (electronics) term for the refinishing operation or repair of an electronic printed circuit board (PCB) assembly

Rework is the term for the refinishing operation or repair of an electronic printed circuit board (PCB) assembly, usually involving desoldering and re-soldering of surface-mounted electronic components (SMD). Mass processing techniques are not applicable to single device repair or replacement, and specialized manual techniques by expert personnel using appropriate equipment are required to replace defective components; area array packages such as ball grid array (BGA) devices particularly require expertise and appropriate tools. A hot air gun or hot air station is used to heat devices and melt solder, and specialised tools are used to pick up and position often tiny components.

Solder paste is a material used in the manufacture of printed circuit boards to connect surface mount components to pads on the board. It is also possible to solder through hole pin in paste components by printing solder paste in/over the holes. The paste initially adheres components in place by being sticky, it is then heated melting the paste and forming a mechanical bond as well as an electrical connection. The paste is applied to the board by jet printing, stencil printing or syringe and then the components are put in place by a pick-and-place machine or by hand.

Selective soldering

</ref></ref></ref>

Quad Flat No-leads package

Flat no-leads packages such as quad-flat no-leads (QFN) and dual-flat no-leads (DFN) physically and electrically connect integrated circuits to printed circuit boards. Flat no-leads, also known as micro leadframe (MLF) and SON, is a surface-mount technology, one of several package technologies that connect ICs to the surfaces of PCBs without through-holes. Flat no-lead is a near chip scale plastic encapsulated package made with a planar copper lead frame substrate. Perimeter lands on the package bottom provide electrical connections to the PCB. Flat no-lead packages include an exposed thermal pad to improve heat transfer out of the IC. Heat transfer can be further facilitated by metal vias in the thermal pad. The QFN package is similar to the quad-flat package (QFP), and a ball grid array (BGA).

Automated optical inspection (AOI) is an automated visual inspection of printed circuit board (PCB) manufacture where a camera autonomously scans the device under test for both catastrophic failure and quality defects. It is commonly used in the manufacturing process because it is a non-contact test method. It is implemented at many stages through the manufacturing process including bare board inspection, solder paste inspection (SPI), pre-reflow and post-reflow as well as other stages.

Solder mask

Solder mask or solder stop mask or solder resist is a thin lacquer-like layer of polymer that is usually applied to the copper traces of a printed circuit board (PCB) for protection against oxidation and to prevent solder bridges from forming between closely spaced solder pads. A solder bridge is an unintended electrical connection between two conductors by means of a small blob of solder. PCBs use solder masks to prevent this from happening. Solder mask is not always used for hand soldered assemblies, but is essential for mass-produced boards that are soldered automatically using reflow or solder bath techniques. Once applied, openings must be made in the solder mask wherever components are soldered, which is accomplished using photolithography. Solder mask is traditionally green but is now available in many colors.

Industrial oven

Industrial ovens are heated chambers used for a variety of industrial applications, including drying, curing, or baking components, parts or final products. Industrial ovens can be used for large or small volume applications, in batches or continuously with a conveyor line, and a variety of temperature ranges, sizes and configurations.

Bead probe technology

Bead probe technology (BPT) is technique used to provide electrical access to printed circuit board (PCB) circuitry for performing in-circuit testing (ICT). It makes use of small beads of solder placed onto the board's traces to allow measuring and controlling of the signals using a test probe. This permits test access to boards on which standard ICT test pads are not feasible due to space constraints.

Potting (electronics)

In electronics, potting is a process of filling a complete electronic assembly with a solid or gelatinous compound for resistance to shock and vibration, and for exclusion of moisture and corrosive agents. Thermosetting plastics or silicone rubber gels are often used, though epoxy resins are also very common. Many sites recommend using a potting product to protect sensitive electronic components from impact, vibration, and loose wires.

Thermal management of high-power LEDs

High power light-emitting diodes (LEDs) can use 350 milliwatts or more in a single LED. Most of the electricity in an LED becomes heat rather than light. If this heat is not removed, the LEDs run at high temperatures, which not only lowers their efficiency, but also makes the LED less reliable. Thus, thermal management of high power LEDs is a crucial area of research and development. It is necessary to limit the junction temperature to a value that will guarantee the desired LED lifetime.

Thermal profiling

A thermal profile is a complex set of time-temperature data typically associated with the measurement of thermal temperatures in an oven. The thermal profile is often measured along a variety of dimensions such as slope, soak, time above liquidus (TAL), and peak.

Soldering process of joining metal pieces with heated filler metal

Soldering is a process in which two or more items are joined together by melting and putting a filler metal (solder) into the joint, the filler metal having a lower melting point than the adjoining metal. Unlike welding, soldering does not involve melting the work pieces. In brazing, the work piece metal also does not melt, but the filler metal is one that melts at a higher temperature than in soldering. In the past, nearly all solders contained lead, but environmental and health concerns have increasingly dictated use of lead-free alloys for electronics and plumbing purposes.

Chip on board Circuit board manufacturing technique

Chip on board is the method of manufacturing where integrated circuits are wired and bonded directly to a printed circuit board. By eliminating the packaging of individual semiconductor devices, the completed product can be more compact, lighter, and less costly. In some cases chip on board construction improves the operation of radio frequency systems by reducing the inductance and capacitance of integrated circuit leads. Chip on board effectively merges two levels of electronic packaging, level 1 (components) and level 2, and may be referred to as a "level 1.5"

References

  1. "Robust, Simplified and Solder-Free Assembly Processing of Electronics Products, Verdant Electronics White Paper, Sunnyvale, CA, 2007
  2. 1 2 Davy, Gordan. "Occam Process Introduction" (PDF). Surface Mount Technology Association. Retrieved 2009-09-20.
  3. "Verdant Electronics homepage" . Retrieved 2009-09-24.
  4. Sampson, Michael. "Basic Information on Tin Whiskers". NASA. Retrieved 2009-09-20.
  5. Galbraith, Trevor. "Disruptive Technologies". Global SMT & Packaging. Retrieved 2009-09-20.
  6. Lee, Hoa H.; et al. "Bisphenol A is released from polycarbonate drinking bottles and mimics the neurotoxic actions of estrogen in developing cerebellar neurons". Department of Pharmacology and Cell Biophysics, University of Cincinnati College of Medicine. Archived from the original on 2008-01-11. Retrieved 2009-09-23.