Ocean-bottom seismometer

Last updated
OBS.jpg

An ocean-bottom seismometer (OBS) is a seismometer that is designed to record the earth's motion under oceans and lakes from man-made sources and natural sources.

Contents

Sensors at the sea floor are used to observe acoustic and seismic events. Seismic and acoustic signals may be caused by different sources, by earthquakes and tremors as well as by artificial sources. Computing and analyzing the data yields information about the kind of source and, in case of natural seismic events, the geophysics and geology of the sea floor and the deeper crust. The deployment of OBS along a profile will give information about the deep structure of the Earth's crust and upper mantle in offshore areas. OBS may be equipped with a maximum of a three-component geophone in addition to a hydrophone, and thus it needs a capacity of more than 144 Mbytes, which would be the minimum for adequate MCS profiling. In a typical survey, the instruments should be operational for several days (deployments can exceed 12 months), [1] which requires a data storage capacity of more than 500 Mbyte. Other experiments, such as tomographic investigations within a 3D-survey or seismological monitoring, demand even larger capacities.

Instrument package

An ocean-bottom seismometer goes over the side of R/V Oceanus in early 2001, off Barbados. It will record long-period, low-frequency seismic waves for up to a year before the ship returns to retrieve the instrument. (Photo by John Whitehead, Woods Hole Oceanographic Institution) OBS deployment.jpg
An ocean-bottom seismometer goes over the side of R/V Oceanus in early 2001, off Barbados. It will record long-period, low-frequency seismic waves for up to a year before the ship returns to retrieve the instrument. (Photo by John Whitehead, Woods Hole Oceanographic Institution)

The OBS consists of an aluminum sphere which contains sensors, electronics, enough alkaline batteries to last 10 days on the ocean bottom, and an acoustic release. The two sphere halves are put together with an O-ring and a metal clamp to hold the halves together. A slight vacuum is placed on the sphere to better ensure a seal. The sphere by itself floats, so an anchor is needed to sink the instrument to the bottom. In this case, the anchor is a flat metal plate 40 inches (1.02 meters) in diameter. The instrument has been designed to be able to deploy and recover off almost any vessel. All that is needed (for deployment and recovery) is enough deck space to hold the instruments and their anchors and a boom capable of lifting an OBS off the deck and swinging it over to lower it into the water. The OBS is bolted to the anchor and then dropped (gently) over the side.

Working

OBS schema.jpg

Seismometers work using the principle of inertia. The seismometer body rests securely on the sea floor. Inside, a heavy mass hangs on a spring between two magnets. When the earth moves, so do the seismometer and its magnets, but the mass briefly stays where it is. As the mass oscillates through the magnetic field it produces an electric current which the instrument measures. The seismometer itself is a small metal cylinder; the rest of the footlocker-sized OBS consists of equipment to run the seismometer (a data logger and batteries), weight to sink it to the sea floor, a remote-controlled acoustic release and flotation to bring the instrument back to the surface.

Types of OBS

The ground motion caused by earthquakes can be extremely small (less than a millimeter) or large (several meters). Small motions have high frequencies, so monitoring them requires measuring movement many times per second and produces huge amounts of data. Large motions are much rarer, so instruments need to record data less frequently, to save memory space and battery power for longer deployments. Because of this variability, engineers have designed two basic kinds of seismometers:

Short-period OBSs

They record high-frequency motions (up to hundreds of times per second). They can record small, short-period earthquakes and are also useful for studying the outer tens of kilometers of the seafloor. Technical details for two models: WHOI D2 and Scripps L-CHEAPO.

Long-period OBSs

They record a much broader range of motions, with frequencies of about 10 per second to once or twice a minute. They are used for recording mid-sized earthquakes and seismic activity far from the instrument. Technical details for two models: WHOI long-deployment OBS and Scripps long-deployment OBS.

Custom OBSs

Custom OBS are beginning to be developed, as the need for expansion on coverage in the field of seismology increases [2] and permanent deployments are necessary. One customizations to improve the data quality of the seismometers is to borehole the seismometer in an aluminium casing into the surface (~1 m) to create stability in the soft sediment of the ocean floor. [2] Another customization that is possible is to add a differential pressure gauge (DPG) and/or current meter, to understand how the pressure is changing around the seismometer. [2] It can also be practical to store the datalogger and battery in a glass Benthos sphere to be able to connect to the ship through the use of a remotely operated vehicle (ROV), [3] which is a necessary advancement to have and maintain permanent OBS deployments.

This shows a P wave (red) converting into an S wave (blue), with the P wave having the ability to travel through the ocean and reflect bown off of the surface into the seismometer. This creates water multiples that do not exist when the seismometer has free-air above it. PsSPconversions withwatermultiplesforwiki.pdf
This shows a P wave (red) converting into an S wave (blue), with the P wave having the ability to travel through the ocean and reflect bown off of the surface into the seismometer. This creates water multiples that do not exist when the seismometer has free-air above it.

Advantages

Very stable clocks make comparable the readings from many far-flung seismometers. (Without reliable time-stamps, data from different machines would be unusable.) Development of these clocks was a crucial advance for seismologists studying the Earth's interior. After recovering an ocean-bottom seismometer, scientists can offload the instrument's data by plugging in a data cable. This feature saves the task of gingerly disassembling the instrument's protective casing while aboard a rolling ship. The ability to connect a seismometer to a mooring or observatory makes the instrument's data instantly available. This is a huge advantage for geologists scrambling to respond to a major earthquake.

Disadvantages

The environment of these deployments complicates standard methods that are used in analyzing the data because of the ocean on top of the seismometer, as opposed to free-air above a typical land station. [5] These seismometers also have a decreased signal-to-noise ratio because of noise created by the movement of the oceans due to wind driven tides, particularly at periods of 7 and 14 seconds. [6] This long period motion and current flowing around the seismometer can create problems of long period noise on the horizontal components because the soft (saturated) sediment that the seismometer is resting on is more susceptible to allow the seismometer to tilt [7] and ideally, the horizontal component will not move and be perpendicular to gravity to get the best results out of the seismometer. The saturated sediment also reduces signal-to-noise ratio significantly [8] because the velocity of the P and S-waves decreases and the seismic waves get trapped in the sediment layer creating a large amplitude ringing due to the conservation of energy.

This is a map of the land and ocean-bottom stations that were deployed in the Cascadia Initiative. (Photo from http://cascadia.uoregon.edu/CIET/cascade-initiative-background) Cascadia Array.jpg
This is a map of the land and ocean-bottom stations that were deployed in the Cascadia Initiative. (Photo from http://cascadia.uoregon.edu/CIET/cascade-initiative-background)

Notable deployments

One of the largest OBS deployments ever was The Big Mantle Electromagnetic and Tomography (Big MELT) Experiment, [9] involving almost 100 OBS in the East Pacific Rise with the goal of understanding magma generation and mid-ocean ridge development. The Cascadia Initiative [10] [8] is an offshore/onshore deployment to observe the deformation of the Juan de Fuca and Gorda plates, as well as topics ranging from megathrust earthquakes to volcanic arc structure in the Pacific Northwest. The Hawaiian PLUME (Plume-Lithosphere Undersea Melt Experiment) [11] was an onshore/offshore (predominantly offshore) deployment to better understand what type of mantle plume is beneath Hawaii and to better understand the mantle upwelling in this region and its relationship to the lithosphere. The Asthenospheric and Lithospheric Broadband Architecture from the California Offshore Region Experiment (ALBACORE) [12] deployment from 2010 to 2011 of 34 OBS to help better understand the tectonic interaction at the Pacific-North America plate boundary and deformation styles of the Pacific plate and the nearby microplates.

Related Research Articles

<span class="mw-page-title-main">Seismology</span> Scientific study of earthquakes and propagation of elastic waves through a planet

Seismology is the scientific study of earthquakes and the generation and propagation of elastic waves through the Earth or other planetary bodies. It also includes studies of earthquake environmental effects such as tsunamis as well as diverse seismic sources such as volcanic, tectonic, glacial, fluvial, oceanic microseism, atmospheric, and artificial processes such as explosions and human activities. A related field that uses geology to infer information regarding past earthquakes is paleoseismology. A recording of Earth motion as a function of time, created by a seismograph is called a seismogram. A seismologist is a scientist works in basic or applied seismology.

<span class="mw-page-title-main">Geophysics</span> Physics of the Earth and its vicinity

Geophysics is a subject of natural science concerned with the physical processes and physical properties of the Earth and its surrounding space environment, and the use of quantitative methods for their analysis. Geophysicists, who usually study geophysics, physics, or one of the Earth sciences at the graduate level, complete investigations across a wide range of scientific disciplines. The term geophysics classically refers to solid earth applications: Earth's shape; its gravitational, magnetic fields, and electromagnetic fields ; its internal structure and composition; its dynamics and their surface expression in plate tectonics, the generation of magmas, volcanism and rock formation. However, modern geophysics organizations and pure scientists use a broader definition that includes the water cycle including snow and ice; fluid dynamics of the oceans and the atmosphere; electricity and magnetism in the ionosphere and magnetosphere and solar-terrestrial physics; and analogous problems associated with the Moon and other planets.

<span class="mw-page-title-main">Seismic wave</span> Seismic, volcanic, or explosive energy that travels through Earths layers

A seismic wave is a mechanical wave of acoustic energy that travels through the Earth or another planetary body. It can result from an earthquake, volcanic eruption, magma movement, a large landslide and a large man-made explosion that produces low-frequency acoustic energy. Seismic waves are studied by seismologists, who record the waves using seismometers, hydrophones, or accelerometers. Seismic waves are distinguished from seismic noise, which is persistent low-amplitude vibration arising from a variety of natural and anthropogenic sources.

<span class="mw-page-title-main">Seismometer</span> Instrument that records seismic waves by measuring ground motions

A seismometer is an instrument that responds to ground displacement and shaking such as caused by quakes, volcanic eruptions, and explosions. They are usually combined with a timing device and a recording device to form a seismograph. The output of such a device—formerly recorded on paper or film, now recorded and processed digitally—is a seismogram. Such data is used to locate and characterize earthquakes, and to study the internal structure of Earth.

Seismic tomography or seismotomography is a technique for imaging the subsurface of the Earth using seismic waves. The properties of seismic waves are modified by the material through which they travel. By comparing the differences in seismic waves recorded at different locations, it is possible to create a model of the subsurface structure. Most commonly, these seismic waves are generated by earthquakes or man-made sources such as explosions. Different types of waves, including P-,S-, Rayleigh, and Love waves can be used for tomographic images, though each comes with their own benefits and downsides and are used depending on the geologic setting, seismometer coverage, distance from nearby earthquakes, and required resolution. The model created by tomographic imaging is almost always a seismic velocity model, and features within this model may be interpreted as structural, thermal, or compositional variations. Geoscientists apply seismic tomography to a wide variety of settings in which the subsurface structure is of interest, ranging in scale from whole-Earth structure to the upper few meters below the surface.

<span class="mw-page-title-main">Reflection seismology</span> Explore subsurface properties with seismology

Reflection seismology is a method of exploration geophysics that uses the principles of seismology to estimate the properties of the Earth's subsurface from reflected seismic waves. The method requires a controlled seismic source of energy, such as dynamite or Tovex blast, a specialized air gun or a seismic vibrator. Reflection seismology is similar to sonar and echolocation.

<span class="mw-page-title-main">Mendocino Triple Junction</span> Point where the Gorda plate, the North American plate, and the Pacific plate meet

The Mendocino Triple Junction (MTJ) is the point where the Gorda plate, the North American plate, and the Pacific plate meet, in the Pacific Ocean near Cape Mendocino in northern California. This triple junction is the location of a change in the broad tectonic plate motions which dominate the west coast of North America, linking convergence of the northern Cascadia subduction zone and translation of the southern San Andreas Fault system. This region can be characterized by transform fault movement, the San Andreas also by transform strike slip movement, and the Cascadia subduction zone by a convergent plate boundary subduction movement. The Gorda plate is subducting, towards N50ºE, under the North American plate at 2.5–3 cm/yr, and is simultaneously converging obliquely against the Pacific plate at a rate of 5 cm/yr in the direction N115ºE. The accommodation of this plate configuration results in a transform boundary along the Mendocino Fracture Zone, and a divergent boundary at the Gorda Ridge. This area is tectonically active historically and today. The Cascadia subduction zone is capable of producing megathrust earthquakes on the order of MW 9.0.

<span class="mw-page-title-main">EarthScope</span> Earth science program exploring the structure of the North American continent

The EarthScope project (2003-2018) was an National Science Foundation (NSF) funded Earth science program using geological and geophysical techniques to explore the structure and evolution of the North American continent and to understand the processes controlling earthquakes and volcanoes. The project had three components: USArray, the Plate Boundary Observatory, and the San Andreas Fault Observatory at Depth. Organizations associated with the project included UNAVCO, the Incorporated Research Institutions for Seismology (IRIS), Stanford University, the United States Geological Survey (USGS) and National Aeronautics and Space Administration (NASA). Several international organizations also contributed to the initiative. EarthScope data are publicly accessible.

<span class="mw-page-title-main">Passive seismic</span>

Passive seismic is the detection of natural low frequency earth movements, usually with the purpose of discerning geological structure and locate underground oil, gas, or other resources. Usually the data listening is done in multiple measurement points that are separated by several hundred meters, over periods of several hours to several days, using portable seismometers. The conclusions about the geological structure are based on the spectral analysis or on the mathematical reconstruction of the propagation and possible sources of the observed seismic waves. If the latter is planned, data are usually acquired in multiple points simultaneously, using so called synchronized lines. Reliability of the time reverse modelling can be further increased using results of reflection seismology about the distribution of the sound speed in the underground volume.

<span class="mw-page-title-main">ICEARRAY</span>

ICEARRAY is an abbreviation for Icelandic Strong-motion Array. The ICEARRAY network is a seismic array of 14 strong-motion stations located within the South Iceland Seismic Zone. Each station consists of a seismograph situated in a protective housing. The stations are spread across a geographical area of approximately 3 km² in the town of Hveragerdi in south-western Iceland. Most of the units are located in the basements of residential buildings in Hveragerdi town centre, which is approximately 35 km southeast of Iceland's capital, Reykjavík. The ICEARRAY project is supported by the 6th Framework of the European Commission through the Marie Curie International Re-integration Grant, the Iceland Centre for Research and the University of Iceland Earthquake Engineering Research Centre.

<span class="mw-page-title-main">Lunar seismology</span> Study of ground motions of the Moon

Lunar seismology is the study of ground motions of the Moon and the events, typically impacts or moonquakes, that excite them.

In geophysics, geology, civil engineering, and related disciplines, seismic noise is a generic name for a relatively persistent vibration of the ground, due to a multitude of causes, that is often a non-interpretable or unwanted component of signals recorded by seismometers.

<span class="mw-page-title-main">Hydrate Ridge</span>

Hydrate Ridge is an accretionary thrust clathrate hydrate formation, meaning it has been made of sediment scraped off of subducting oceanic plate. It is approx. 200 m high, and located 100 km offshore of Oregon. At hydrate formations, methane is trapped in crystallized water structures. Such methane transforms into the gaseous phase and seeps into the ocean at this site, which has been a popular location of study since its discovery in 1986. Hydrate Ridge also supports a methane-driven benthic community.

<span class="mw-page-title-main">Apollo 14 Passive Seismic Experiment</span>

The Apollo 14 Passive Seismic Experiment (PSE) was placed on the lunar surface on February 5, 1971, as part of the Apollo 14 ALSEP package. The PSE was designed to detect vibrations and tilting of the lunar surface and measure changes in gravity at the instrument location. The vibrations are due to internal seismic sources (moonquakes) and external. The primary objective of the experiment was to use these data to determine the internal structure, physical state, and tectonic activity of the Moon. The secondary objectives were to determine the number and mass of meteoroids that strike the Moon and record tidal deformations of the lunar surface.

<span class="mw-page-title-main">Southern Hydrate Ridge</span>

Southern Hydrate Ridge, located about 90 km offshore Oregon Coast, is an active methane seeps site located on the southern portion of Hydrate Ridge. It extends 25 km in length and 15 km across, trending north-northeast-south-southwest at the depth of approximately 800 m. Southern Hydrate Ridge has been the site of numerous submersible dives with the human occupied Alvin submarine, extensive visits by numerous robotic vehicles including the Canadian ROV ROPOS, Jason , and Tiburon (MBARI), and time-series geophysical studies that document changes in the subsurface distribution of methane. It is also a key site of the National Science Foundations Regional Cabled Array that is part of the Ocean Observatories Initiative (OOI), which includes eight types of cabled instruments streaming live data back to shore 24/7/365 at the speed of light, as well as uncabled instruments.

<span class="mw-page-title-main">Marine geophysics</span>

Marine geophysics is the scientific discipline that employs methods of geophysics to study the world's ocean basins and continental margins, particularly the solid earth beneath the ocean. It shares objectives with marine geology, which uses sedimentological, paleontological, and geochemical methods. Marine geophysical data analyses led to the theories of seafloor spreading and plate tectonics.

Anne Sheehan is a geologist known for her research using seismometer data to examine changes in the Earth's crust and mantle.

Fluvial seismology is the application of seismological methods to understand river processes, such as discharge, erosion, and streambed evolution. Flowing water and the movement of sediments along the streambed generate elastic (seismic) waves that propagate into the surrounding Earth materials. Seismometers can record these signals, which can be analyzed to illuminate different fluvial processes such as turbulent water flow and bedload transport. Seismic methods have been used to observe discharge values that range from single-digits up through tens of thousands of cubic feet per second (cfs).

<span class="mw-page-title-main">MERMAID</span> Marine scientific instrument platform

MERMAID is a marine scientific instrument platform, short for Mobile Earthquake Recorder for Marine Areas by Independent Divers.

Seismic wide-angle reflection and refraction is a technique used in geophysical investigations of Earth's crust and upper mantle. It allows the development of a detailed model of seismic velocities beneath Earth's surface well beyond the reach of exploration boreholes. The velocities can then be used, often in combination with the interpretation of standard seismic reflection data and gravity data, to interpret the geology of the subsurface.

References

  1. "Home". obsip.org.
  2. 1 2 3 Romanowicz, Barbara, et al. "MOISE: A pilot experiment towards long term sea-floor geophysical observatories." EARTH PLANETS AND SPACE 50 (1998): 927–938
  3. Stutzmann, Eléonore, et al. "MOISE: a prototype multiparameter ocean-bottom station." Bulletin of the Seismological Society of America 91.4 (2001): 885–892.
  4. Reeves, Z., and V. Lekic, Constraining lithospheric structure across the California borderland using receiver functions, AGU Abstract (Control ID 1807272), Fall, 2013 Meeting.
  5. Bostock, M. G., and A. M. Tréhu. "Wave‐Field Decomposition of Ocean Bottom Seismograms." Bulletin of the Seismological Society of America 102.4 (2012): 1681–1692.
  6. Dolenc, David, et al. "Observations of infragravity waves at the Monterey ocean bottom broadband station (MOBB)." Geochemistry, Geophysics, Geosystems 6.9 (2005).
  7. Duennebier, Frederick K., Grant Blackinton, and George H. Sutton. "Current-generated noise recorded on ocean bottom seismometers." Marine Geophysical Researches 5.1 (1981): 109–115.
  8. 1 2 Yang, Xiaotao (January 3, 2019). "A comprehensive quality analysis of empirical Green's functions at Ocean Bottom Seismometers in Cascadia". Seismological Research Letters. 90 (2): 744–753. doi:10.1785/0220180273. S2CID   134750386.
  9. "The Big MELT".
  10. "Cascade Initiative Background | Cascadia Initiative Expedition Team".
  11. Laske, Gabi; Collins, J.; Wolfe, C.; Weeraratne, D.; Solomon, Stanley; Detrick, R.; Orcutt, John; Bercovici, David; Hauri, Erik (30 November 2006). "The Hawaiian PLUME Project Successfully Completes its First Deployment". AGU Fall Meeting Abstracts. -1: 0657. Bibcode:2006AGUFM.V13B0657L.
  12. "Archived copy". Archived from the original on 2015-01-16. Retrieved 2013-12-04.{{cite web}}: CS1 maint: archived copy as title (link)