Oculoauricular syndrome

Last updated
Oculoauricular syndrome
Autosomal recessive - en.svg
Oculoauricular syndrome is inherited in an autosomal recessive manner.
Specialty Medical genetics   OOjs UI icon edit-ltr-progressive.svg

Oculoauricular syndrome is a rare genetic condition affecting the eyes and ears. It is due to mutations in the H6 family homeobox 1 (HMX1) gene. It is also known as the Schorderet-Munier-Franceschetti syndrome.

Contents

Signs and symptoms

The clinical features of this condition are as follows:[ citation needed ]

Eyes

Ears

Hearing is normal

Genetics

This condition is inherited in an autosomal recessive manner. The gene responsible is located on the short arm of chromosome 4 (4p16.1) [1]

Pathogensis

This is not presently understood.[ citation needed ]

Diagnosis

Differential diagnosis

This includes

Epidemiology

This condition has only been described in three families to date (2017).[ citation needed ]

History

This condition was first described in 1945. [2] The gene responsible was identified in 2008. [1]

Related Research Articles

<span class="mw-page-title-main">Treacher Collins syndrome</span> Human genetic disorder

Treacher Collins syndrome (TCS) is a genetic disorder characterized by deformities of the ears, eyes, cheekbones, and chin. The degree to which a person is affected, however, may vary from mild to severe. Complications may include breathing problems, problems seeing, cleft palate, and hearing loss. Those affected generally have normal intelligence.

<span class="mw-page-title-main">Coloboma</span> Hole in one of the structures of the eye

A coloboma is a hole in one of the structures of the eye, such as the iris, retina, choroid, or optic disc. The hole is present from birth and can be caused when a gap called the choroid fissure, which is present during early stages of prenatal development, fails to close up completely before a child is born. Ocular coloboma is relatively uncommon, affecting less than one in every 10,000 births.

<span class="mw-page-title-main">CHARGE syndrome</span> Medical condition

CHARGE syndrome is a rare syndrome caused by a genetic disorder. First described in 1979, the acronym "CHARGE" came into use for newborn children with the congenital features of coloboma of the eye, heart defects, atresia of the nasal choanae, retardation of growth and/or development, genital and/or urinary abnormalities, and ear abnormalities and deafness. These features are no longer used in making a diagnosis of CHARGE syndrome, but the name remains. About two thirds of cases are due to a CHD7 mutation. CHARGE syndrome occurs only in 0.1–1.2 per 10,000 live births; as of 2009, it was the leading cause of congenital deafblindness in the US.

The short-stature homeobox gene (SHOX), also known as short-stature-homeobox-containing gene, is a gene located on both the X and Y chromosomes, which is associated with short stature in humans if mutated or present in only one copy (haploinsufficiency).

<span class="mw-page-title-main">Axenfeld–Rieger syndrome</span> Medical condition

Axenfeld–Rieger syndrome is a rare autosomal dominant disorder, which affects the development of the teeth, eyes, and abdominal region.

<span class="mw-page-title-main">Papillorenal syndrome</span> Medical condition

Papillorenal syndrome is an autosomal dominant genetic disorder marked by underdevelopment (hypoplasia) of the kidney and colobomas of the optic nerve.

<span class="mw-page-title-main">Naegeli–Franceschetti–Jadassohn syndrome</span> Medical condition

Naegeli–Franceschetti–Jadassohn syndrome (NFJS), also known as chromatophore nevus of Naegeli and Naegeli syndrome, is a rare autosomal dominant form of ectodermal dysplasia, characterized by reticular skin pigmentation, diminished function of the sweat glands, the absence of teeth and hyperkeratosis of the palms and soles. One of the most striking features is the absence of fingerprint lines on the fingers.

<span class="mw-page-title-main">Currarino syndrome</span> Medical condition

Currarino syndrome is an inherited congenital disorder where either the sacrum is not formed properly, or there is a mass in the presacral space in front of the sacrum, and there are malformations of the anus or rectum. It occurs in approximately 1 in 100,000 people.

<span class="mw-page-title-main">HESX1</span> Protein-coding gene in the species Homo sapiens

Homeobox expressed in ES cells 1, also known as homeobox protein ANF, is a homeobox protein that in humans is encoded by the HESX1 gene.

<span class="mw-page-title-main">Homeobox protein MSX-1</span> Protein-coding gene in the species Homo sapiens

Homeobox protein MSX-1, is a protein that in humans is encoded by the MSX1 gene. MSX1 transcripts are not only found in thyrotrope-derived TSH cells, but also in the TtT97 thyrotropic tumor, which is a well differentiated hyperplastic tissue that produces both TSHß- and a-subunits and is responsive to thyroid hormone. MSX1 is also expressed in highly differentiated pituitary cells which until recently was thought to be expressed exclusively during embryogenesis. There is a highly conserved structural organization of the members of the MSX family of genes and their abundant expression at sites of inductive cell–cell interactions in the embryo suggest that they have a pivotal role during early development.

<span class="mw-page-title-main">PITX2</span> Protein-coding gene in the species Homo sapiens

Paired-like homeodomain transcription factor 2 also known as pituitary homeobox 2 is a protein that in humans is encoded by the PITX2 gene.

<span class="mw-page-title-main">Homeobox A1</span> Protein-coding gene in humans

Homeobox protein Hox-A1 is a protein that in humans is encoded by the HOXA1 gene.

<span class="mw-page-title-main">Gillespie syndrome</span> Medical condition

Gillespie syndrome, also called aniridia, cerebellar ataxia and mental deficiency, is a rare genetic disorder. The disorder is characterized by partial aniridia, ataxia, and, in most cases, intellectual disability. It is heterogeneous, inherited in either an autosomal dominant or autosomal recessive manner. Gillespie syndrome was first described by American ophthalmologist Fredrick Gillespie in 1965.

<span class="mw-page-title-main">Scalp–ear–nipple syndrome</span> Medical condition

Scalp–ear–nipple syndrome is a condition associated with aplasia cutis congenita.

<span class="mw-page-title-main">Miller syndrome</span> Medical condition

Miller syndrome, also known as Genée–Wiedemann syndrome, Wildervanck–Smith syndrome or postaxial acrofacial dysostosis, is an extremely rare genetic condition that manifests as craniofacial, limb and eye deformities. It is caused by a mutation in the DHODH gene. The incidence of the condition is not known, and nothing is known of its pathogenesis.

<span class="mw-page-title-main">FOXE3</span> Protein-coding gene in the species Homo sapiens

Forkhead box protein E3 (FOXE3) also known as forkhead-related transcription factor 8 (FREAC-8) is a protein that in humans is encoded by the FOXE3 gene located on the short arm of chromosome 1.

Liebenberg syndrome is a rare autosomal genetic disease that involves a deletion mutation upstream of the PITX1 gene, which is one that's responsible for the body's organization, specifically in forming lower limbs. In animal studies, when this deletion was introduced to developing birds, their wing buds were noted to take on limb-like structures.

<span class="mw-page-title-main">PRSS56</span> Protein-coding gene in the species Homo sapiens

Putative Serine Protease 56 (PRSS56) is a serine protease that in humans is encoded by the PRSS56 gene. This protein has been implicated in human eye development.

<span class="mw-page-title-main">Otodental syndrome</span> Medical condition

Otodental syndrome, also known as otodental dysplasia, is an exceptionally rare disease that is distinguished by a specific phenotype known as globodontia, that in rare cases can be associated with eye coloboma and high frequency hearing loss. Globodontia is an abnormal condition that can occur in both the primary and secondary dentition, except for the incisors which are normal in shape and size. This is demonstrated by significant enlargement of the canine and molar teeth. The premolars are either reduced in size or are absent. In some cases, the defects affecting the teeth, eye and ear can be either individual or combined. When these conditions are combined with eye coloboma, the condition is also known as oculo-otodental syndrome. The first known case of otodental syndrome was found in Hungary in a mother and her son by Denes and Csiba in 1969. Prevalence is less than 1 out of every 1 million individuals. The cause of otodental syndrome is considered to be genetic. It is an autosomal dominant inheritance and is variable in its expressivity. Haploinsufficiency in the fibroblast growth factor 3 (FGF3) gene (11q13) has been reported in patients with otodental syndrome and is thought to cause the phenotype. Both males and females are equally affected. Individuals diagnosed with otodental syndrome can be of any age; age is not a relevant factor. Currently there are no specific genetic treatments for otodental syndrome. Dental and orthodontic management are the recommended course of action.

<span class="mw-page-title-main">Solute carrier family 16 member 12</span> Protein-coding gene in the species Homo sapiens

Solute carrier family 16 member 12 is a protein that in humans is encoded by the SLC16A12 gene.

References

  1. 1 2 Schorderet, D.F.; Nichini, O.; Boisset, G.; Polok, B.; Tiab, L.; Mayeur, H.; Raji, B; de la Houssaye, G; Abitbol, M.M.; Munier, FL (2008). "Mutation in the human homeobox gene NKX5-3 causes an oculo-auricular syndrome". American Journal of Human Genetics. 82 (5): 1178–1184. doi:10.1016/j.ajhg.2008.03.007. PMC   2427260 . PMID   18423520.
  2. Franceschetti, A/; Valerio, M. (1945). "Malformations associees des yeux et des oreilles". Confinia Neurologica. 6 (5): 255–257. doi:10.1159/000105978.