Open web steel joist

Last updated
Steel joists and Joist Girders being erected. Steel Joists & Joist Girders.jpg
Steel joists and Joist Girders being erected.

In structural engineering, the open web steel joist (OWSJ) is a lightweight steel truss consisting, in the standard form, of parallel chords and a triangulated web system, proportioned to span between bearing points.

Contents

The main function of an OWSJ is to provide direct support for roof or floor deck and to transfer the load imposed on the deck to the structural frame i.e. beam and column.

In order to accurately design an OWSJ, engineers consider the joist span between bearing points, joist spacing, slope, live loads, dead loads, collateral loads, seismic loads, wind uplift, deflection criteria and maximum joist depth allowed. Many steel joist manufacturers supply economical load tables in order to allow designers to select the most efficient joist sizes for their projects.

While OWSJs can be adapted to suit a wide variety of architectural applications, the greatest economy will be realized when utilizing standard details, which may vary from one joist manufacturer to another. Some other shapes, in addition to the parallel top and bottom chord, are single slope, double slope, arch, gable and scissor configurations. These shapes may not be available from all joist manufacturers, and are usually supplied at a premium cost that reflects the complexity required.

Arch steel joists being erected. Arch Steel Joists.jpg
Arch steel joists being erected.

The manufacture of OWSJ in North America is overseen by the Steel Joist Institute (SJI). The SJI has worked since 1928 to maintain sound engineering practice throughout the industry. As a non-profit organization of active manufacturers, the Institute cooperates with governmental and business agencies to establish steel joist standards. Continuing research and updating are included in this work. [1] Load tables and specifications are published by the SJI in five categories: K-Series, LH-Series, DLH-Series, CJ-Series, and Joist Girders. Load tables are available in both Allowable Stress Design (ASD) and Load and Resistance Factor Design (LRFD).

History

The first joist in 1923 was a Warren truss type, with top and bottom chords of round bars and a web formed from a single continuous bent bar. Various other types were developed, but problems also followed because each manufacturer had their own design and fabrication standards. Architects, engineers and builders found it difficult to compare rated capacities and to use fully the economies of steel joist construction.

Gable steel joists being erected. Gable Steel Joists.jpg
Gable steel joists being erected.

Members of the industry began to organize the institute, and in 1928 the first standard specifications were adopted, followed in 1929 by the first load table. The joists covered by these early standards were later identified as open web steel joists, SJ-Series. [1]

K-Series

Open Web Steel Joists, K-Series, were primarily developed to provide structural support for floors and roofs of buildings. They possess multiple advantages and features which have resulted in their wide use and acceptance throughout the United States and other countries.

K-Series Joists are standardized regarding depths, spans, and load-carrying capacities. There are 63 separate designations in the Load Tables, representing joist depths from 10 inches (250 mm) through 30 inches (760 mm) in 2 inches (51 mm) increments and spans through 60 feet (18,000 mm). Standard K-Series Joists have a 2+12 inches (64 mm) end bearing depth so that, regardless of the overall joist depths, the tops of the joists lie in the same plane. Seat depths deeper than 2+12 inches (64 mm) can also be specified.

Standard K-Series Joists are designed for simple span uniform loading which results in a parabolic moment diagram for chord forces and a linearly sloped shear diagram for web forces. When non-uniform and/or concentrated loads are encountered the shear and moment diagrams required may be shaped quite differently and may not be covered by the shear and moment design envelopes of a standard K-Series Joist. When conditions such as this arise, a KCS joist may be a good option. [1]

KCS Joists

Common steel joist chord and web configurations. Steel Joists.png
Common steel joist chord and web configurations.

KCS (K-Series Constant Shear) joists are designed in accordance with the Standard Specification for K-Series Joists.

KCS joist chords are designed for a flat positive moment envelope. The moment capacity is constant at all interior panels. All webs are designed for a vertical shear equal to the specified shear capacity and interior webs will be designed for 100% stress reversal. [1]

LH- and DLH-Series

Longspan (LH) and Deep Longspan (DLH) Steel Joists are relatively light weight shop-manufactured steel trusses used in the direct support of floor or roof slabs or decks between walls, beams, and main structural members.

The LH- and DLH-Series have been designed for the purpose of extending the use of joists to spans and loads in excess of those covered by Open Web Steel Joists, K-Series.

LH-Series Joists have been standardized in depths from 18 inches (460 mm) through 48 inches (1,200 mm), for spans through 96 feet (29,000 mm).

DLH-Series Joists have been standardized in depths from 52 inches (1,300 mm) through 120 inches (3,000 mm), for spans up through 240 feet (73,000 mm).

Longspan and Deep Longspan Steel Joists can be furnished with either underslung or square ends, with parallel chords or with single or double pitched top chords to provide sufficient slope for roof drainage. Square end joists are primarily intended for bottom chord bearing.

The depth of the bearing seat at the ends of underslung LH- and DLH-Series Joists have been established at 5 inches (130 mm) for chord section number 2 through 17. A bearing seat depth of 7+12 inches (190 mm) has been established for the DLH Series chord section number 18 through 25. [1]

CJ-Series

Open Web Composite Steel Joists, CJ-Series, were developed to provide structural support for floors and roofs which incorporate an overlying concrete slab while also allowing the steel joist and slab to act together as an integral unit after the concrete has adequately cured.

The CJ-Series Joists are capable of supporting larger floor or roof loadings due to the attachment of the concrete slab to the top chord of the composite joist. Shear connection between the concrete slab and steel joist is typically made by the welding of shear studs through the steel deck to the underlying CJ-Series Composite Steel Joist. [2]

Joist Girders

Joist Girders are open web steel trusses used as primary framing members. They are designed as simple spans supporting equally spaced concentrated loads for a floor or roof system. These concentrated loads are considered to act at the panel points of the Joist Girders.

These members have been standardized for depths from 20 to 120 inches (510 to 3,050 mm), and spans to 120 feet (37,000 mm).

The standard depth at the bearing ends has been established at 7+12 inches (190 mm) for all Joist Girders. Joist Girders are usually attached to the columns by bolting with two 34 inch (19 mm) diameter A325 bolts. [1]

See also

Related Research Articles

<span class="mw-page-title-main">Floor</span> Walking surface of a room

A floor is the bottom surface of a room or vehicle. Floors vary from simple dirt in a cave to many layered surfaces made with modern technology. Floors may be stone, wood, bamboo, metal or any other material that can support the expected load.

<span class="mw-page-title-main">Truss</span> Rigid structure that consists of two-force members only

A truss is an assembly of members such as beams, connected by nodes, that creates a rigid structure.

<span class="mw-page-title-main">Joist</span> Horizontal framing structure

A joist is a horizontal structural member used in framing to span an open space, often between beams that subsequently transfer loads to vertical members. When incorporated into a floor framing system, joists serve to provide stiffness to the subfloor sheathing, allowing it to function as a horizontal diaphragm. Joists are often doubled or tripled, placed side by side, where conditions warrant, such as where wall partitions require support.

<span class="mw-page-title-main">Concrete block</span> Standard-sized block used in construction

A concrete block, also known as a cinder block in North American English, breeze block in British English, concrete masonry unit (CMU), or by various other terms, is a standard-size rectangular block used in building construction. The use of blockwork allows structures to be built in the traditional masonry style with layers of staggered blocks.

<span class="mw-page-title-main">Framing (construction)</span> Construction technique

Framing, in construction, is the fitting together of pieces to give a structure support and shape. Framing materials are usually wood, engineered wood, or structural steel. The alternative to framed construction is generally called mass wall construction, where horizontal layers of stacked materials such as log building, masonry, rammed earth, adobe, etc. are used without framing.

<span class="mw-page-title-main">I-beam</span> Construction element

An I-beam is any of various structural members with an I or H-shaped cross-section. Technical terms for similar items include H-beam, w-beam, universal beam (UB), rolled steel joist (RSJ), or double-T. I-beams are typically made of structural steel and serve a wide variety of construction uses.

<span class="mw-page-title-main">Formwork</span> Molds for cast

Formwork is molds into which concrete or similar materials are either precast or cast-in-place. In the context of concrete construction, the falsework supports the shuttering molds. In specialty applications formwork may be permanently incorporated into the final structure, adding insulation or helping reinforce the finished structure.

<span class="mw-page-title-main">Girder</span> Support beam used in construction

A girder is a beam used in construction. It is the main horizontal support of a structure which supports smaller beams. Girders often have an I-beam cross section composed of two load-bearing flanges separated by a stabilizing web, but may also have a box shape, Z shape, or other forms. Girders are commonly used to build bridges.

<span class="mw-page-title-main">Girder bridge</span> Bridge built of girders placed on bridge abutments and foundation piers

A girder bridge is a bridge that uses girders as the means of supporting its deck. The two most common types of modern steel girder bridges are plate and box.

<span class="mw-page-title-main">Steel building</span>

A steel building is a metal structure fabricated with steel for the internal support and for exterior cladding, as opposed to steel framed buildings which generally use other materials for floors, walls, and external envelope. Steel buildings are used for a variety of purposes including storage, work spaces and living accommodation. They are classified into specific types depending on how they are used.

Steel Design, or more specifically, Structural Steel Design, is an area of structural engineering used to design steel structures. These structures include schools, houses, bridges, commercial centers, tall buildings, warehouses, aircraft, ships and stadiums. The design and use of steel frames are commonly employed in the design of steel structures. More advanced structures include steel plates and shells.

Composite construction is a generic term to describe any building construction involving multiple dissimilar materials. Composite construction is often used in building aircraft, watercraft, and building construction. There are several reasons to use composite materials including increased strength, aesthetics, and environmental sustainability.

<span class="mw-page-title-main">Mabey Logistic Support Bridge</span>

The Mabey Logistic Support Bridge is a portable pre-fabricated truss bridge, designed for use by military engineering units to upgrade routes for heavier traffic, replace civilian bridges damaged by enemy action or floods etc., replace assault and general support bridges and to provide a long span floating bridge capability. The bridge is a variant of the Mabey Compact 200 bridge, with alterations made to suit the military user as well as a ramp system to provide ground clearance to civilian and military vehicles.

<span class="mw-page-title-main">T-beam</span> T-shaped construction module

A T-beam, used in construction, is a load-bearing structure of reinforced concrete, wood or metal, with a T-shaped cross section. The top of the T-shaped cross section serves as a flange or compression member in resisting compressive stresses. The web of the beam below the compression flange serves to resist shear stress. When used for highway bridges the beam incorporates reinforcing bars in the bottom of the beam to resist the tensile stresses which occur during bending.

<span class="mw-page-title-main">Cold-formed steel</span> Steel products shaped by cold-working processes

Cold-formed steel (CFS) is the common term for steel products shaped by cold-working processes carried out near room temperature, such as rolling, pressing, stamping, bending, etc. Stock bars and sheets of cold-rolled steel (CRS) are commonly used in all areas of manufacturing. The terms are opposed to hot-formed steel and hot-rolled steel.

<span class="mw-page-title-main">I-joist</span>

An engineered wood joist, more commonly known as an I-joist, is a product designed to eliminate problems that occur with conventional wood joists. Invented in 1969, the I-joist is an engineered wood product that has great strength in relation to its size and weight. The biggest notable difference from dimensional lumber is that the I-joist carries heavy loads with less lumber than a dimensional solid wood joist. As of 2005, approximately 50% of all wood light framed floors used I-joists. I-joists were designed to help eliminate typical problems that come with using solid lumber as joists.

<span class="mw-page-title-main">Deck (bridge)</span> Surface of a bridge

A deck is the surface of a bridge. A structural element of its superstructure, it may be constructed of concrete, steel, open grating, or wood. Sometimes the deck is covered by a railroad bed and track, asphalt concrete, or other form of pavement for ease of vehicle crossing. A concrete deck may be an integral part of the bridge structure or it may be supported with I-beams or steel girders.

ASTM A325 is an ASTM International standard for heavy hex structural bolts, titled Standard Specification for Structural Bolts, Steel, Heat Treated, 120/105 ksi Minimum Tensile Strength. It defines mechanical properties for bolts that range from 12 to 1+12 inches in diameter.

<span class="mw-page-title-main">Godavari Arch Bridge</span> Bridge in Rajahmundry, India

The Godavari Arch Bridge is a bowstring-girder bridge that spans the Godavari River in Rajahmundry, India. It is the latest of the three bridges that span the Godavari river at Rajahmundry. The Havelock Bridge being the earliest, was built in 1897, and having served its full utility, was decommissioned in 1997. The second bridge known as the Godavari Bridge is a truss bridge and is India's third longest road-cum-rail bridge crossing a water body.

This glossary of structural engineering terms pertains specifically to structural engineering and its sub-disciplines. Please see glossary of engineering for a broad overview of the major concepts of engineering.

References

  1. 1 2 3 4 5 6 Standard Specifications for K-Series, LH-Series, DLH-Series Open Web Steel Joists and for Joist Girders. SJI 100 (44th ed.). Florence, SC: Steel Joist Institute. 2015.
  2. Standard Specifications for Composite Steel Joists. CJ-Series (1st ed.). Florence, SC: Steel Joist Institute. 2007.