Optical overheating protection

Last updated

With all solar thermal collector systems there is a potential risk that the solar collector may reach an equilibrium or stagnation temperature higher than the maximum safe operating temperature. Various measures are taken for optical overheating protection.

Contents

Stagnation temperatures are encountered under conditions of high radiation while no heat transfer fluid is flowing through the collector, for example during power failures, component failures, servicing, energy storage capacity limitations, or periods when little hot water is extracted from the system. [1] More generally, stagnation conditions can be considered to be any situation under which the solar collector cannot adequately dispatch the absorbed solar heat to the heat transfer fluid.

Besides any damaging effects to the system, high stagnation temperatures also place constraints on collector materials. These materials must retain their important properties during and after exposure to the high stagnation temperatures. This implies that solar collectors are generally built from high temperature resistant materials. These materials are usually expensive, heavy, and have an overall high environmental impact. [2]

Polymeric materials offer a significant cost-reduction and environmental improvement potential for solar thermal collectors and may thus benefit a broader utilization of solar energy for various heating purposes. However, the long-term service temperature of plastics is limited. Thus, for potential applications of plastics in solar absorbers an appropriate design including overheating protection is essential. [3] Feasible ways would be a reduction in optical gain (for example, using thermotropic layers, or electrochromic devices) or an increase in system losses, by dumping of the hot water excess.

In this article an alternative method to decrease the optical gain is presented. The method is based on the geometry of prisms and the phenomenon of Total Internal Reflection.

Working principle

Working Principle of the Prismatic Optical Switch. When liquid is present in the switch, the switch behaves as if transparent. When there is no liquid present, the switch becomes reflective Prismatic Optical Switch.jpg
Working Principle of the Prismatic Optical Switch. When liquid is present in the switch, the switch behaves as if transparent. When there is no liquid present, the switch becomes reflective

According to Snell's law, light cannot escape from a medium when it strikes the medium boundary at an angle of incidence (θ) that is larger than the critical anglec), an optical phenomenon called Total Internal Reflection. The critical angle can be calculated using;

For a polycarbonate medium, with a refraction index of n=1.59, placed in an atmosphere of air with a refraction index close to 1, Total Internal Reflection occurs when θ > θ(c,air)=39°.

Consider a polycarbonate prismatic structure with an apex angle α1,2=45° placed in an atmosphere of air. A ray of light that strikes the medium boundary at normal incidence is total internal reflected, as θin=45°> θ(c,air)=39°. In presence of water, θ(c,water)=56.8° and θin=45°< θ(c,water), the incoming light is merely refracted and traverses the polycarbonate medium. As such, water acts as a switching fluid. In theory, water can be replaced by any other liquid, with an index of refraction close to that of the prismatic structure, to act as the switching fluid.

The optical switch consists of a self-regulating mechanism. In its passive state the switch is filled with liquid and light is allowed to pass through the switch and heat the system behind it. As the system heats up, the switching fluid evaporates out of the optical switch and the prismatic structure starts to behave as a reflective surface. No more light passes through the switch, limiting the maximum temperature of the system to the evaporation temperature of the liquid. [4]

Angular Dependence

Transmittance of a prismatic array against day rotation(d) (d=0 stands for 12.00h, 15deg equals 1 hour). The prisms are aligned such that the angle of incidence (th) in mid-summer at noon. (A); Vertical alignment of the prismatic array for a mid-summer day (a) for a mid-autumn & mid-spring day (b), and for a mid-winter day (c). B; Horizontal alignment of the prismatic array for a mid-summer day (d), a mid-autumn & mid-spring day (e), and for a mid-winter day (f). Transmittance Prismatic Array.jpg
Transmittance of a prismatic array against day rotation(δ) (δ=0 stands for 12.00h, 15° equals 1 hour). The prisms are aligned such that the angle of incidence (θ) in mid-summer at noon. (A); Vertical alignment of the prismatic array for a mid-summer day (a) for a mid-autumn & mid-spring day (b), and for a mid-winter day (c). B; Horizontal alignment of the prismatic array for a mid-summer day (d), a mid-autumn & mid-spring day (e), and for a mid-winter day (f).

Resulting from its geometry, the optical switch is sensitive to the angle of the incident beam. Depending on the shape of the prisms, the transmittance of the switch in its reflective state during a typical day shows characteristic angular dependence. This dependence can be used to find specific transmission curves for different applications, where the geometry of the prisms serves as the input variable.

Applications

The main application for which the optical switch was developed is overheating protection for solar thermal collectors. [4] The prismatic geometry can be integrated within the cover plate of the collectors to prevent them from overheating, either by self-regulation through evaporation, or by draining the water out of the switch at a specified maximum temperature. Temperature limitation would allow for the use of polymeric materials within solar collectors, dramatically reducing cost-price and increasing market penetration.

Another application of the switch is in windows for both housing and office buildings. The amount of sunlight entering the building can be controlled by the switching liquid. Preventing the amount of sunlight entering a building will reduce the temperature inside the building on sunny days.

Finally, the switch can be used within roofs of greenhouses. The plants in the greenhouse can be protected from damage on sunny days by putting the switch in the reflective state. Currently greenhouses are covered with a chalk layer to protect the plants during summer from excessive sunlight. Applying the chalk layer is time-consuming and bad for the environment. Once the chalk is applied, it also blocks sunlight during less sunny days. The optical switch could potentially resolve this issue using the switching mechanism described above.

The temperature inside the greenhouse can be regulated by switching a certain amount of roof sections in the reflective state. Also the switching fluid inside the roof can be circulated to extract heat from the greenhouse. These cooling methods allow the (roof) windows to remain closed and that the climate (relative humidity and raised CO2 levels remain optimal and constant.

The switching fluid in the greenhouse roof can be used as a filter for a certain part of the solar spectrum. Water allows so-called "PAR" light (Photosynthetically active radiation, the light that plants use to grow) to pass, while "NIR" (Near Infra Red) light is absorbed. The amount of NIR light to absorb can be tuned by solving micro-particles of Copper Sulphate or clay in the switching fluid. In that way optimum growth conditions can be selected.

Some greenhouse products, like flowers, are grown by using artificial light during the night. This artificial light causes so-called light pollution in the environment of the greenhouse. When a greenhouse roof consists of a well designed optical switch the greenhouse roof becomes reflective during the night, which keeps the artificial light inside the greenhouse. As a side effect there are fewer lights needed since the roof acts as an efficient mirror.

Related Research Articles

<span class="mw-page-title-main">Albedo</span> Ratio of how much light is reflected back from a body

Albedo is the fraction of sunlight that is diffusely reflected by a body. It is measured on a scale from 0 to 1. Surface albedo is defined as the ratio of radiosity Je to the irradiance Ee received by a surface. The proportion reflected is not only determined by properties of the surface itself, but also by the spectral and angular distribution of solar radiation reaching the Earth's surface. These factors vary with atmospheric composition, geographic location, and time.

<span class="mw-page-title-main">Refraction</span> Physical phenomenon relating to the direction of waves

In physics, refraction is the redirection of a wave as it passes from one medium to another. The redirection can be caused by the wave's change in speed or by a change in the medium. Refraction of light is the most commonly observed phenomenon, but other waves such as sound waves and water waves also experience refraction. How much a wave is refracted is determined by the change in wave speed and the initial direction of wave propagation relative to the direction of change in speed.

<span class="mw-page-title-main">Passive solar building design</span> Architectural engineering that uses the Suns heat without electric or mechanical systems

In passive solar building design, windows, walls, and floors are made to collect, store, reflect, and distribute solar energy, in the form of heat in the winter and reject solar heat in the summer. This is called passive solar design because, unlike active solar heating systems, it does not involve the use of mechanical and electrical devices.

In the study of heat transfer, radiative cooling is the process by which a body loses heat by thermal radiation. As Planck's law describes, every physical body spontaneously and continuously emits electromagnetic radiation.

<span class="mw-page-title-main">Solar thermal energy</span> Technology using sunlight for heat

Solar thermal energy (STE) is a form of energy and a technology for harnessing solar energy to generate thermal energy for use in industry, and in the residential and commercial sectors. Solar thermal collectors are classified by the United States Energy Information Administration as low-, medium-, or high-temperature collectors. Low-temperature collectors are generally unglazed and used to heat swimming pools or to heat ventilation air. Medium-temperature collectors are also usually flat plates but are used for heating water or air for residential and commercial use.

<span class="mw-page-title-main">Solar water heating</span> Use of sunlight for water heating with a solar thermal collector

Solar water heating (SWH) is heating water by sunlight, using a solar thermal collector. A variety of configurations are available at varying cost to provide solutions in different climates and latitudes. SWHs are widely used for residential and some industrial applications.

<span class="mw-page-title-main">Solar thermal collector</span> Device that collects heat

A solar thermal collector collects heat by absorbing sunlight. The term "solar collector" commonly refers to a device for solar hot water heating, but may refer to large power generating installations such as solar parabolic troughs and solar towers or non-water heating devices such as solar cookers or solar air heaters.

<span class="mw-page-title-main">Parabolic trough</span> Technology used in concentrated solar power stations

A parabolic trough collector (PTC) is a type of solar thermal collector that is straight in one dimension and curved as a parabola in the other two, lined with a polished metal mirror. The sunlight which enters the mirror parallel to its plane of symmetry is focused along the focal line, where objects are positioned that are intended to be heated. In a solar cooker, for example, food is placed at the focal line of a trough, which is cooked when the trough is aimed so the Sun is in its plane of symmetry.

<span class="mw-page-title-main">Smart glass</span> Glass with electrically switchable opacity

Smart glass, also known as switchable glass, dynamic glass, and smart-tinting glass, is a type of glass that can change its optical properties, becoming opaque or tinted, in response to electrical or thermal signals. This can be used to prevent sunlight and heat from entering a building during hot days, improving energy efficiency. It can also be used to conveniently provide privacy or visibility to a room.

<span class="mw-page-title-main">Heliostat</span> Solar tracking device

A heliostat is a device that includes a mirror, usually a plane mirror, which turns so as to keep reflecting sunlight toward a predetermined target, compensating for the Sun's apparent motions in the sky.

<span class="mw-page-title-main">Solar mirror</span> Type of mirror designed for sunlight

A solar mirror contains a substrate with a reflective layer for reflecting the solar energy, and in most cases an interference layer. This may be a planar mirror or parabolic arrays of solar mirrors used to achieve a substantially concentrated reflection factor for solar energy systems.

Nonimaging optics is a branch of optics that is concerned with the optimal transfer of light radiation between a source and a target. Unlike traditional imaging optics, the techniques involved do not attempt to form an image of the source; instead an optimized optical system for optimal radiative transfer from a source to a target is desired.

<span class="mw-page-title-main">Dielectric mirror</span> Mirror made of dielectric materials

A dielectric mirror, also known as a Bragg mirror, is a type of mirror composed of multiple thin layers of dielectric material, typically deposited on a substrate of glass or some other optical material. By careful choice of the type and thickness of the dielectric layers, one can design an optical coating with specified reflectivity at different wavelengths of light. Dielectric mirrors are also used to produce ultra-high reflectivity mirrors: values of 99.999% or better over a narrow range of wavelengths can be produced using special techniques. Alternatively, they can be made to reflect a broad spectrum of light, such as the entire visible range or the spectrum of the Ti-sapphire laser.

<span class="mw-page-title-main">Solar tracker</span> Device that orients a payload towards the Sun

A solar tracker is a device that orients a payload toward the Sun. Payloads are usually solar panels, parabolic troughs, Fresnel reflectors, lenses, or the mirrors of a heliostat.

<span class="mw-page-title-main">Light tube</span> Architectural element

Light tubes are structures that transmit or distribute natural or artificial light for the purpose of illumination and are examples of optical waveguides.

<span class="mw-page-title-main">Solar gain</span> Solar energy effect

Solar gain is the increase in thermal energy of a space, object or structure as it absorbs incident solar radiation. The amount of solar gain a space experiences is a function of the total incident solar irradiance and of the ability of any intervening material to transmit or resist the radiation.

<span class="mw-page-title-main">Solar architecture</span>

Solar architecture is designing buildings to use the sun's heat and light to maximum advantage and minimum disadvantage, and especially refers to harnessing solar power. It is related to the fields of optics, thermics, electronics and materials science. Both active and passive strategies are involved.

<span class="mw-page-title-main">Photovoltaic thermal hybrid solar collector</span>

Photovoltaic thermal collectors, typically abbreviated as PVT collectors and also known as hybrid solar collectors, photovoltaic thermal solar collectors, PV/T collectors or solar cogeneration systems, are power generation technologies that convert solar radiation into usable thermal and electrical energy. PVT collectors combine photovoltaic solar cells, which convert sunlight into electricity, with a solar thermal collector, which transfers the otherwise unused waste heat from the PV module to a heat transfer fluid. By combining electricity and heat generation within the same component, these technologies can reach a higher overall efficiency than solar photovoltaic (PV) or solar thermal (T) alone.

The following outline is provided as an overview of and topical guide to solar energy:

<span class="mw-page-title-main">Passive daytime radiative cooling</span> Management strategy for global warming

Passive daytime radiative cooling (PDRC) is the use of unpowered, reflective/thermally-emissive surfaces to lower the temperature of a building or other object.

References

  1. S.J. Harrison, Q. Lin and L.C.S. Mesquita. Integral Stagnation Temperature Control for Solar Collectors, SESCI 2004 Conference University of Waterloo Waterloo, Ontario, Canada August 21st–25th, 2004
  2. M. Köhl et al. Durability of Polymeric Glazing Materials for Solar Applications, Solar Energy 79 (2005) 618–623.
  3. G.M. Wallner, K. Resch and R. Hausner. Property and performance requirements for thermotropic layers to prevent overheating in an all polymeric flat-plate collector, Solar Energy Materials & Solar Cells 92 (2008) 614–620
  4. 1 2 M. Slaman, R. Griessen. Solar Collector Overheating Protection, Solar Energy 83 (2009) 982–987