Order-4-4 pentagonal honeycomb

Last updated
Order-4-4 pentagonal honeycomb
Type Regular honeycomb
Schläfli symbol {5,4,4}
{5,41,1}
Coxeter diagram CDel node 1.pngCDel 5.pngCDel node.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.png
CDel node 1.pngCDel 5.pngCDel node.pngCDel split1-44.pngCDel nodes.png
Cells {5,4} H2-5-4-dual.svg
Faces {5}
Vertex figure {4,4}
Dual {4,4,5}
Coxeter group [5,4,4]
[5,41,1]
PropertiesRegular

In the geometry of hyperbolic 3-space, the order-4-4 pentagonal honeycomb a regular space-filling tessellation (or honeycomb). Each infinite cell consists of a pentagonal tiling whose vertices lie on a 2-hypercycle, each of which has a limiting circle on the ideal sphere.

Contents

Geometry

The Schläfli symbol of the order-4-4 pentagonal honeycomb is {5,4,4}, with four order-4 pentagonal tilings meeting at each edge. The vertex figure of this honeycomb is a square tiling, {4,4}.

Hyperbolic honeycomb 5-4-4 poincare.png
Poincaré disk model
H3 544 UHS plane at infinity.png
Ideal surface

It is a part of a series of regular polytopes and honeycombs with {p,4,4} Schläfli symbol, and square tiling vertex figures:

{p,4,4} honeycombs
SpaceE3 H3
FormAffineParacompactNoncompact
Name {2,4,4} {3,4,4} {4,4,4} {5,4,4} {6,4,4} ..{,4,4}
Coxeter
CDel node 1.pngCDel p.pngCDel node.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node h0.png
CDel node 1.pngCDel p.pngCDel node.pngCDel 4.pngCDel node h0.pngCDel 4.pngCDel node.png
CDel node 1.pngCDel p.pngCDel node h0.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.png
CDel node 1.pngCDel 2.pngCDel node.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.png
CDel node 1.pngCDel 2.pngCDel node.pngCDel split1-44.pngCDel nodes.png
CDel node 1.pngCDel 2.pngCDel nodes.pngCDel iaib.pngCDel nodes.png
CDel node 1.pngCDel 2.pngCDel nodes.pngCDel split2-44.pngCDel node.png
CDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.png
CDel node 1.pngCDel 3.pngCDel node.pngCDel split1-44.pngCDel nodes.png
CDel node 1.pngCDel split1.pngCDel nodes.pngCDel 2a2b-cross.pngCDel nodes.png
CDel node 1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.png
CDel node 1.pngCDel 4.pngCDel node.pngCDel split1-44.pngCDel nodes.png
CDel node 1.pngCDel split1-44.pngCDel nodes.pngCDel 2a2b-cross.pngCDel nodes.png
CDel nodes 11.pngCDel 2a2b-cross.pngCDel nodes.pngCDel split2-44.pngCDel node.png
CDel node 1.pngCDel 5.pngCDel node.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.png
CDel node 1.pngCDel 5.pngCDel node.pngCDel split1-44.pngCDel nodes.png
CDel node 1.pngCDel split1-55.pngCDel nodes.pngCDel 2a2b-cross.pngCDel nodes.png
 
CDel node 1.pngCDel 6.pngCDel node.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.png
CDel node 1.pngCDel 6.pngCDel node.pngCDel split1-44.pngCDel nodes.png
CDel node 1.pngCDel split1-66.pngCDel nodes.pngCDel 2a2b-cross.pngCDel nodes.png
CDel nodes 11.pngCDel 3a3b-cross.pngCDel nodes.pngCDel split2-44.pngCDel node.png
CDel node 1.pngCDel infin.pngCDel node.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.png
CDel node 1.pngCDel infin.pngCDel node.pngCDel split1-44.pngCDel nodes.png
CDel node 1.pngCDel split1-ii.pngCDel nodes.pngCDel 2a2b-cross.pngCDel nodes.png
CDel nodes 11.pngCDel iaib-cross.pngCDel nodes.pngCDel split2-44.pngCDel node.png
Image Order-4 square hosohedral honeycomb-sphere.png H3 344 CC center.png H3 444 FC boundary.png Hyperbolic honeycomb 5-4-4 poincare.png Hyperbolic honeycomb 6-4-4 poincare.png Hyperbolic honeycomb i-4-4 poincare.png
Cells Spherical square hosohedron2.png
{2,4}
CDel node 1.pngCDel 2.pngCDel node.pngCDel 4.pngCDel node.png
Octahedron.png
{3,4}
CDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png
Square tiling uniform coloring 1.png
{4,4}
CDel node 1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.png
H2-5-4-dual.svg
{5,4}
CDel node 1.pngCDel 5.pngCDel node.pngCDel 4.pngCDel node.png
H2 tiling 246-1.png
{6,4}
CDel node 1.pngCDel 6.pngCDel node.pngCDel 4.pngCDel node.png
H2 tiling 24i-1.png
{,4}
CDel node 1.pngCDel infin.pngCDel node.pngCDel 4.pngCDel node.png

Order-4-4 hexagonal honeycomb

Order-4-4 hexagonal honeycomb
Type Regular honeycomb
Schläfli symbol {6,4,4}
{6,41,1}
Coxeter diagram CDel node 1.pngCDel 6.pngCDel node.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.png
CDel node 1.pngCDel 6.pngCDel node.pngCDel split1-44.pngCDel nodes.png
Cells {6,4} Uniform tiling 64-t0.png
Faces {6}
Vertex figure {4,4}
Dual {4,4,6}
Coxeter group [6,4,4]
[6,41,1]
PropertiesRegular

In the geometry of hyperbolic 3-space, the order-4-4 hexagonal honeycomb a regular space-filling tessellation (or honeycomb). Each infinite cell consists of an order-4 hexagonal tiling whose vertices lie on a 2-hypercycle, each of which has a limiting circle on the ideal sphere.

The Schläfli symbol of the octagonal tiling honeycomb is {6,4,4}, with three octagonal tilings meeting at each edge. The vertex figure of this honeycomb is a square tiling, {4,4}.

Hyperbolic honeycomb 6-4-4 poincare.png
Poincaré disk model
H3 644 UHS plane at infinity.png
Ideal surface

Order-4-4 apeirogonal honeycomb

Order-4-4 apeirogonal honeycomb
Type Regular honeycomb
Schläfli symbol {∞,4,4}
{∞,41,1}
Coxeter diagram CDel node 1.pngCDel infin.pngCDel node.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.png
CDel node 1.pngCDel infin.pngCDel node.pngCDel split1-44.pngCDel nodes.png
Cells {∞,4} H2 tiling 24i-1.png
Faces {∞}
Vertex figure {4,4}
Dual {4,4,∞}
Coxeter group [∞,4,4]
[∞,41,1]
PropertiesRegular

In the geometry of hyperbolic 3-space, the order-4-4 apeirogonal honeycomb a regular space-filling tessellation (or honeycomb). Each infinite cell consists of an order-4 apeirogonal tiling whose vertices lie on a 2-hypercycle, each of which has a limiting circle on the ideal sphere.

The Schläfli symbol of the apeirogonal tiling honeycomb is {∞,4,4}, with three order-4 apeirogonal tilings meeting at each edge. The vertex figure of this honeycomb is a square tiling, {4,4}.

Hyperbolic honeycomb i-4-4 poincare.png
Poincaré disk model
H3 i44 UHS plane at infinity.png
Ideal surface

See also

Related Research Articles

In the geometry of hyperbolic 3-space, the order-7 dodecahedral honeycomb is a regular space-filling tessellation.

In the geometry of hyperbolic 3-space, the heptagonal tiling honeycomb or 7,3,3 honeycomb a regular space-filling tessellation. Each infinite cell consists of a heptagonal tiling whose vertices lie on a 2-hypercycle, each of which has a limiting circle on the ideal sphere.

In the geometry of hyperbolic 3-space, the order-7 cubic honeycomb is a regular space-filling tessellation. With Schläfli symbol {4,3,7}, it has seven cubes {4,3} around each edge. All vertices are ultra-ideal with infinitely many cubes existing around each vertex in an order-7 triangular tiling vertex arrangement.

In the geometry of hyperbolic 3-space, the order-3-4 heptagonal honeycomb or 7,3,4 honeycomb a regular space-filling tessellation. Each infinite cell consists of a heptagonal tiling whose vertices lie on a 2-hypercycle, each of which has a limiting circle on the ideal sphere.

In the geometry of hyperbolic 3-space, the order-3-5 heptagonal honeycomb a regular space-filling tessellation. Each infinite cell consists of a heptagonal tiling whose vertices lie on a 2-hypercycle, each of which has a limiting circle on the ideal sphere.

In the geometry of hyperbolic 3-space, the order-3-6 heptagonal honeycomb a regular space-filling tessellation. Each infinite cell consists of a heptagonal tiling whose vertices lie on a 2-hypercycle, each of which has a limiting circle on the ideal sphere.

In the geometry of hyperbolic 3-space, the order-3-7 heptagonal honeycomb a regular space-filling tessellation with Schläfli symbol {7,3,7}.

In the geometry of hyperbolic 3-space, the order-5 octahedral honeycomb is a regular space-filling tessellation with Schläfli symbol {3,4,5}. It has five octahedra {3,4} around each edge. All vertices are ultra-ideal with infinitely many octahedra existing around each vertex in an order-5 square tiling vertex arrangement.

In the geometry of hyperbolic 3-space, the order-4 icosahedral honeycomb is a regular space-filling tessellation with Schläfli symbol {3,5,4}.

In the geometry of hyperbolic 3-space, the order-6-4 triangular honeycomb is a regular space-filling tessellation with Schläfli symbol {3,6,4}.

In the geometry of hyperbolic 3-space, the order-4-5 square honeycomb is a regular space-filling tessellation with Schläfli symbol {4,4,5}. It has five square tiling {4,4} around each edge. All vertices are ultra-ideal with infinitely many square tiling existing around each vertex in an order-5 square tiling vertex arrangement.

In the geometry of hyperbolic 3-space, the order-4-3 pentagonal honeycomb or 5,4,3 honeycomb is a regular space-filling tessellation. Each infinite cell is an order-4 pentagonal tiling whose vertices lie on a 2-hypercycle, each of which has a limiting circle on the ideal sphere.

In the geometry of hyperbolic 3-space, the order-5-3 square honeycomb or 4,5,3 honeycomb a regular space-filling tessellation. Each infinite cell consists of a pentagonal tiling whose vertices lie on a 2-hypercycle, each of which has a limiting circle on the ideal sphere.

In the geometry of hyperbolic 3-space, the order-4-5 pentagonal honeycomb a regular space-filling tessellation with Schläfli symbol {5,4,5}.

In the geometry of hyperbolic 3-space, the order-5-4 square honeycomb a regular space-filling tessellation with Schläfli symbol {4,5,4}.

In the geometry of hyperbolic 3-space, the order-7-3 triangular honeycomb is a regular space-filling tessellation with Schläfli symbol {3,7,3}.

In the geometry of hyperbolic 3-space, the order-6-3 square honeycomb or 4,6,3 honeycomb is a regular space-filling tessellation. Each infinite cell consists of a hexagonal tiling whose vertices lie on a 2-hypercycle, each of which has a limiting circle on the ideal sphere.

In the geometry of hyperbolic 3-space, the order-6-4 square honeycomb a regular space-filling tessellation with Schläfli symbol {4,6,4}.

In the geometry of hyperbolic 3-space, the order-8-3 triangular honeycomb is a regular space-filling tessellation with Schläfli symbol {3,8,3}.

In the geometry of hyperbolic 3-space, the order-infinite-3 triangular honeycomb is a regular space-filling tessellation with Schläfli symbol {3,∞,3}.

References