This article needs additional citations for verification .(April 2018) |
The ordered exponential, also called the path-ordered exponential, is a mathematical operation defined in non-commutative algebras, equivalent to the exponential of the integral in the commutative algebras. In practice the ordered exponential is used in matrix and operator algebras. It is a kind of product integral, or Volterra integral.
Let A be an algebra over a field K, and a(t) be an element of A parameterized by the real numbers,
The parameter t in a(t) is often referred to as the time parameter in this context.
The ordered exponential of a is denoted
where the term n = 0 is equal to 1 and where is the time-ordering operator. It is a higher-order operation that ensures the exponential is time-ordered, so that any product of a(t) that occurs in the expansion of the exponential is ordered such that the value of t is increasing from right to left of the product. For example:
Time ordering is required, as products in the algebra are not necessarily commutative.
The operation maps a parameterized element onto another parameterized element, or symbolically,
There are various ways to define this integral more rigorously.
The ordered exponential can be defined as the left product integral of the infinitesimal exponentials, or equivalently, as an ordered product of exponentials in the limit as the number of terms grows to infinity:
where the time moments {t0, ..., tN} are defined as ti ≡ i Δt for i = 0, ..., N, and Δt ≡ t / N.
The ordered exponential is in fact a geometric integral [ broken anchor ]. [1] [2] [3]
The ordered exponential is unique solution of the initial value problem:
The ordered exponential is the solution to the integral equation:
This equation is equivalent to the previous initial value problem.
The ordered exponential can be defined as an infinite sum,
This can be derived by recursively substituting the integral equation into itself.
Given a manifold where for a with group transformation it holds at a point :
Here, denotes exterior differentiation and is the connection operator (1-form field) acting on . When integrating above equation it holds (now, is the connection operator expressed in a coordinate basis)
with the path-ordering operator that orders factors in order of the path . For the special case that is an antisymmetric operator and is an infinitesimal rectangle with edge lengths and corners at points above expression simplifies as follows :
Hence, it holds the group transformation identity . If is a smooth connection, expanding above quantity to second order in infinitesimal quantities one obtains for the ordered exponential the identity with a correction term that is proportional to the curvature tensor.
The exponential function is a mathematical function denoted by or . Unless otherwise specified, the term generally refers to the positive-valued function of a real variable, although it can be extended to the complex numbers or generalized to other mathematical objects like matrices or Lie algebras. The exponential function originated from the operation of taking powers of a number, but various modern definitions allow it to be rigorously extended to all real arguments , including irrational numbers. Its ubiquitous occurrence in pure and applied mathematics led mathematician Walter Rudin to consider the exponential function to be "the most important function in mathematics".
In mathematics, the Laplace transform, named after Pierre-Simon Laplace, is an integral transform that converts a function of a real variable to a function of a complex variable .
The natural logarithm of a number is its logarithm to the base of the mathematical constant e, which is an irrational and transcendental number approximately equal to 2.718281828459. The natural logarithm of x is generally written as ln x, logex, or sometimes, if the base e is implicit, simply log x. Parentheses are sometimes added for clarity, giving ln(x), loge(x), or log(x). This is done particularly when the argument to the logarithm is not a single symbol, so as to prevent ambiguity.
In probability theory, a probability density function (PDF), density function, or density of an absolutely continuous random variable, is a function whose value at any given sample in the sample space can be interpreted as providing a relative likelihood that the value of the random variable would be equal to that sample. Probability density is the probability per unit length, in other words, while the absolute likelihood for a continuous random variable to take on any particular value is 0, the value of the PDF at two different samples can be used to infer, in any particular draw of the random variable, how much more likely it is that the random variable would be close to one sample compared to the other sample.
In probability theory and statistics, the exponential distribution or negative exponential distribution is the probability distribution of the distance between events in a Poisson point process, i.e., a process in which events occur continuously and independently at a constant average rate; the distance parameter could be any meaningful mono-dimensional measure of the process, such as time between production errors, or length along a roll of fabric in the weaving manufacturing process. It is a particular case of the gamma distribution. It is the continuous analogue of the geometric distribution, and it has the key property of being memoryless. In addition to being used for the analysis of Poisson point processes it is found in various other contexts.
In mathematics, the Lambert W function, also called the omega function or product logarithm, is a multivalued function, namely the branches of the converse relation of the function f(w) = wew, where w is any complex number and ew is the exponential function. The function is named after Johann Lambert, who considered a related problem in 1758. Building on Lambert's work, Leonhard Euler described the W function per se in 1783.
In calculus, and more generally in mathematical analysis, integration by parts or partial integration is a process that finds the integral of a product of functions in terms of the integral of the product of their derivative and antiderivative. It is frequently used to transform the antiderivative of a product of functions into an antiderivative for which a solution can be more easily found. The rule can be thought of as an integral version of the product rule of differentiation; it is indeed derived using the product rule.
In mathematics and classical mechanics, the Poisson bracket is an important binary operation in Hamiltonian mechanics, playing a central role in Hamilton's equations of motion, which govern the time evolution of a Hamiltonian dynamical system. The Poisson bracket also distinguishes a certain class of coordinate transformations, called canonical transformations, which map canonical coordinate systems into canonical coordinate systems. A "canonical coordinate system" consists of canonical position and momentum variables that satisfy canonical Poisson bracket relations. The set of possible canonical transformations is always very rich. For instance, it is often possible to choose the Hamiltonian itself as one of the new canonical momentum coordinates.
In mathematics, the Hodge star operator or Hodge star is a linear map defined on the exterior algebra of a finite-dimensional oriented vector space endowed with a nondegenerate symmetric bilinear form. Applying the operator to an element of the algebra produces the Hodge dual of the element. This map was introduced by W. V. D. Hodge.
The path integral formulation is a description in quantum mechanics that generalizes the stationary action principle of classical mechanics. It replaces the classical notion of a single, unique classical trajectory for a system with a sum, or functional integral, over an infinity of quantum-mechanically possible trajectories to compute a quantum amplitude.
In mathematics, the exponential integral Ei is a special function on the complex plane.
In mathematics, the matrix exponential is a matrix function on square matrices analogous to the ordinary exponential function. It is used to solve systems of linear differential equations. In the theory of Lie groups, the matrix exponential gives the exponential map between a matrix Lie algebra and the corresponding Lie group.
In theoretical physics, path-ordering is the procedure that orders a product of operators according to the value of a chosen parameter:
In scattering theory, a part of mathematical physics, the Dyson series, formulated by Freeman Dyson, is a perturbative expansion of the time evolution operator in the interaction picture. Each term can be represented by a sum of Feynman diagrams.
In differential calculus, there is no single uniform notation for differentiation. Instead, various notations for the derivative of a function or variable have been proposed by various mathematicians. The usefulness of each notation varies with the context, and it is sometimes advantageous to use more than one notation in a given context. The most common notations for differentiation are listed below.
In mathematics and physics, the Magnus expansion, named after Wilhelm Magnus (1907–1990), provides an exponential representation of the product integral solution of a first-order homogeneous linear differential equation for a linear operator. In particular, it furnishes the fundamental matrix of a system of linear ordinary differential equations of order n with varying coefficients. The exponent is aggregated as an infinite series, whose terms involve multiple integrals and nested commutators.
In the theory of Lie groups, the exponential map is a map from the Lie algebra g of a Lie group G into G. In case G is a matrix Lie group, the exponential map reduces to the matrix exponential. The exponential map, denoted exp:g → G, is analytic and has as such a derivative d/dtexp(X(t)):Tg → TG, where X(t) is a C1 path in the Lie algebra, and a closely related differential dexp:Tg → TG.
In the theory of Lie groups, the exponential map is a map from the Lie algebra of a Lie group to the group, which allows one to recapture the local group structure from the Lie algebra. The existence of the exponential map is one of the primary reasons that Lie algebras are a useful tool for studying Lie groups.
Computational anatomy is an interdisciplinary field of biology focused on quantitative investigation and modelling of anatomical shapes variability. It involves the development and application of mathematical, statistical and data-analytical methods for modelling and simulation of biological structures.
Computational anatomy (CA) is the study of shape and form in medical imaging. The study of deformable shapes in computational anatomy rely on high-dimensional diffeomorphism groups which generate orbits of the form . In CA, this orbit is in general considered a smooth Riemannian manifold since at every point of the manifold there is an inner product inducing the norm on the tangent space that varies smoothly from point to point in the manifold of shapes . This is generated by viewing the group of diffeomorphisms as a Riemannian manifold with , associated to the tangent space at . This induces the norm and metric on the orbit under the action from the group of diffeomorphisms.