Organic photonics

Last updated
Molecular structure of the Rhodamine 6G dye which is often used to dope a polymer such as PMMA to create a solid-state organic gain medium. Rhodamine 6G.svg
Molecular structure of the Rhodamine 6G dye which is often used to dope a polymer such as PMMA to create a solid-state organic gain medium.
PMMA repeating unit. PMMA repeating unit.svg
PMMA repeating unit.

Organic photonics is a subfield of photonics (the technical application of optics) in which light is manipulated via organic materials.

Fields within organic photonics include the liquid organic dye laser and organic solid-state dye lasers. Materials used in solid-state dye lasers include:

Organic-inorganic nanoparticle gain media are nanocomposites developed for solid-state dye lasers [3] and can also be used in biosensors, [5] bioanalytics, [5] and nonlinear organic photonics applications. [6]

An additional class of organic materials used in the generation of laser light include organic semiconductors. [7] [8] Conjugated polymers are widely used as optically pumped organic semiconductors. [7] [8]

See also

Related Research Articles

<span class="mw-page-title-main">Optical amplifier</span> Device that amplifies an optical signal

An optical amplifier is a device that amplifies an optical signal directly, without the need to first convert it to an electrical signal. An optical amplifier may be thought of as a laser without an optical cavity, or one in which feedback from the cavity is suppressed. Optical amplifiers are important in optical communication and laser physics. They are used as optical repeaters in the long distance fiber-optic cables which carry much of the world's telecommunication links.

<span class="mw-page-title-main">Plasmon</span> Quasiparticle of charge oscillations in condensed matter

In physics, a plasmon is a quantum of plasma oscillation. Just as light consists of photons, the plasma oscillation consists of plasmons. The plasmon can be considered as a quasiparticle since it arises from the quantization of plasma oscillations, just like phonons are quantizations of mechanical vibrations. Thus, plasmons are collective oscillations of the free electron gas density. For example, at optical frequencies, plasmons can couple with a photon to create another quasiparticle called a plasmon polariton.

<span class="mw-page-title-main">Dye laser</span> Equipment using an organic dye to emit coherent light

A dye laser is a laser that uses an organic dye as the lasing medium, usually as a liquid solution. Compared to gases and most solid state lasing media, a dye can usually be used for a much wider range of wavelengths, often spanning 50 to 100 nanometers or more. The wide bandwidth makes them particularly suitable for tunable lasers and pulsed lasers. The dye rhodamine 6G, for example, can be tuned from 635 nm (orangish-red) to 560 nm (greenish-yellow), and produce pulses as short as 16 femtoseconds. Moreover, the dye can be replaced by another type in order to generate an even broader range of wavelengths with the same laser, from the near-infrared to the near-ultraviolet, although this usually requires replacing other optical components in the laser as well, such as dielectric mirrors or pump lasers.

<span class="mw-page-title-main">Titanium-sapphire laser</span> Type of laser

Titanium-sapphire lasers (also known as Ti:sapphire lasers, Ti:Al2O3 lasers or Ti:sapphs) are tunable lasers which emit red and near-infrared light in the range from 650 to 1100 nanometers. These lasers are mainly used in scientific research because of their tunability and their ability to generate ultrashort pulses thanks to its broad light emission spectrum. Lasers based on Ti:sapphire were first constructed and invented in June 1982 by Peter Moulton at the MIT Lincoln Laboratory.

Organic semiconductors are solids whose building blocks are pi-bonded molecules or polymers made up by carbon and hydrogen atoms and – at times – heteroatoms such as nitrogen, sulfur and oxygen. They exist in the form of molecular crystals or amorphous thin films. In general, they are electrical insulators, but become semiconducting when charges are injected from appropriate electrodes or are introduced by doping or photoexcitation.

<span class="mw-page-title-main">Tunable laser</span> Laser with a variable wavelength

A tunable laser is a laser whose wavelength of operation can be altered in a controlled manner. While all laser gain media allow small shifts in output wavelength, only a few types of lasers allow continuous tuning over a significant wavelength range.

<span class="mw-page-title-main">Solid-state laser</span> Laser which uses a solid gain medium

A solid-state laser is a laser that uses a gain medium that is a solid, rather than a liquid as in dye lasers or a gas as in gas lasers. Semiconductor-based lasers are also in the solid state, but are generally considered as a separate class from solid-state lasers, called laser diodes.

Amplified spontaneous emission (ASE) or superluminescence is light, produced by spontaneous emission, that has been optically amplified by the process of stimulated emission in a gain medium. It is inherent in the field of random lasers.

Federico Capasso is an applied physicist and is one of the inventors of the quantum cascade laser during his work at Bell Laboratories. He is currently on the faculty of Harvard University.

A fiber laser is a laser in which the active gain medium is an optical fiber doped with rare-earth elements such as erbium, ytterbium, neodymium, dysprosium, praseodymium, thulium and holmium. They are related to doped fiber amplifiers, which provide light amplification without lasing.

Ormosil is a shorthand phrase for organically modified silica or organically modified silicate. In general, ormosils are produced by adding silane to silica-derived gel during the sol-gel process. They are engineered materials that show great promise in a wide range of applications such as:

<span class="mw-page-title-main">Two-photon absorption</span> Simultaneous absorption of two photons by a molecule

In atomic physics, two-photon absorption (TPA or 2PA), also called two-photon excitation or non-linear absorption, is the simultaneous absorption of two photons of identical or different frequencies in order to excite an atom or a molecule from one state (usually the ground state), via a virtual energy level, to a higher energy, most commonly an excited electronic state. Absorption of two photons with different frequencies is called non-degenerate two-photon absorption. Since TPA depends on the simultaneous absorption of two photons, the probability of TPA is proportional to the photon dose (D), which is proportional to the square of the light intensity (D ∝ I2); thus it is a nonlinear optical process. The energy difference between the involved lower and upper states of the molecule is equal or smaller than the sum of the photon energies of the two photons absorbed. Two-photon absorption is a third-order process, with absorption cross section typically several orders of magnitude smaller than one-photon absorption cross section.

<span class="mw-page-title-main">Silicon photonics</span> Photonic systems which use silicon as an optical medium

Silicon photonics is the study and application of photonic systems which use silicon as an optical medium. The silicon is usually patterned with sub-micrometre precision, into microphotonic components. These operate in the infrared, most commonly at the 1.55 micrometre wavelength used by most fiber optic telecommunication systems. The silicon typically lies on top of a layer of silica in what is known as silicon on insulator (SOI).

<span class="mw-page-title-main">F. J. Duarte</span> Laser physicist and author/editor

Francisco Javier "Frank" Duarte is a laser physicist and author/editor of several books on tunable lasers.

<span class="mw-page-title-main">Solid-state dye laser</span> Laser with a dye-doped organic matrix

A solid-state dye laser (SSDL) is a solid-state lasers in which the gain medium is a laser dye-doped organic matrix such as poly(methyl methacrylate) (PMMA), rather than a liquid solution of the dye. These lasers are also referred to as solid-state organic lasers and solid-state dye-doped polymer lasers.

A liquid-crystal laser is a laser that uses a liquid crystal as the resonator cavity, allowing selection of emission wavelength and polarization from the active laser medium. The lasing medium is usually a dye doped into the liquid crystal. Liquid-crystal lasers are comparable in size to diode lasers, but provide the continuous wide spectrum tunability of dye lasers while maintaining a large coherence area. The tuning range is typically several tens of nanometers. Self-organization at micrometer scales reduces manufacturing complexity compared to using layered photonic metamaterials. Operation may be either in continuous wave mode or in pulsed mode.

Organic photorefractive materials are materials that exhibit a temporary change in refractive index when exposed to light. The changing refractive index causes light to change speed throughout the material and produce light and dark regions in the crystal. The buildup can be controlled to produce holographic images for use in biomedical scans and optical computing. The ease with which the chemical composition can be changed in organic materials makes the photorefractive effect more controllable.

<span class="mw-page-title-main">Organic laser</span> Laser that uses a carbon-based material as the gain medium

An organic laser is a laser which uses an organic material as the gain medium. The first organic laser was the liquid dye laser. These lasers use laser dye solutions as their gain media.

<span class="mw-page-title-main">Andrea Armani</span> American chemical engineer

Andrea Martin Armani is Sr Director of Engineering and Physical Sciences at the Ellison Institute of Technology, the Ray Irani Chair in Engineering and Materials Science, and a professor of chemical engineering and materials science at the USC Viterbi School of Engineering. She was awarded the 2010 Presidential Early Career Award for Scientists and Engineers from Barack Obama and is a World Economic Forum Young Global Leader.

John Ballato is an American materials scientist, entrepreneur, and academic. He holds the J. E. Sirrine Endowed Chair of Optical Fiber and is a professor of materials science and engineering, electrical and computer engineering, as well as physics and astronomy at Clemson University. He has received many international recognitions for his research on optical and optoelectronic materials, particularly as relates to optical fiber.

References

  1. Soffer, B. H.; McFarland, B. B. (1967-05-15). "Continuously tunable narrow-band organic dye lasers". Applied Physics Letters. 10 (10). AIP Publishing: 266–267. doi:10.1063/1.1754804. ISSN   0003-6951.
  2. Dunn, Bruce S.; Mackenzie, John D.; Zink, Jeffrey I.; Stafsudd, Oscar M. (1990-11-01). Mackenzie, John D.; Ulrich, Donald R. (eds.). Solid-state tunable lasers based on dye-doped sol-gel materials. Proceedings of SPIE. Vol. 1328. SPIE. pp. 174–182. doi:10.1117/12.22557.
  3. 1 2 Duarte, F. J.; James, R. O. (2003-11-01). "Tunable solid-state lasers incorporating dye-doped, polymer– nanoparticle gain media". Optics Letters. 28 (21). The Optical Society: 2088–2090. doi:10.1364/ol.28.002088. ISSN   0146-9592. PMID   14587824.
  4. Popov S, Vasileva E (2018). "Compact and miniaturized organic dye lasers: from glass to bio-based gain media". In Duarte FJ (ed.). Organic Lasers and Organic Photonics. London: Institute of Physics. pp. 10-1 to 10-27. ISBN   978-0-7503-1570-8.
  5. 1 2 Escribano, Purificación; Julián-López, Beatriz; Planelles-Aragó, José; Cordoncillo, Eloisa; Viana, Bruno; Sanchez, Clément (2008). "Photonic and nanobiophotonic properties of luminescent lanthanide-doped hybrid organic–inorganic materials". J. Mater. Chem. 18 (1). Royal Society of Chemistry (RSC): 23–40. doi:10.1039/b710800a. hdl: 10234/10093 . ISSN   0959-9428.
  6. Dolgaleva, Ksenia; Boyd, Robert W. (2012-03-13). "Local-field effects in nanostructured photonic materials". Advances in Optics and Photonics. 4 (1). The Optical Society: 1–77. doi:10.1364/aop.4.000001. ISSN   1943-8206.
  7. 1 2 Samuel, I. D. W.; Turnbull, G. A. (2007). "Organic Semiconductor Lasers". Chemical Reviews. 107 (4). American Chemical Society (ACS): 1272–1295. doi:10.1021/cr050152i. ISSN   0009-2665. PMID   17385928.
  8. 1 2 C. Karnutsch, Low Threshold Organic Thin Film Laser Devices (Cuvillier, Göttingen, 2007).