Ostrowski's theorem

Last updated

In number theory, Ostrowski's theorem, due to Alexander Ostrowski (1916), states that every non-trivial absolute value on the rational numbers is equivalent to either the usual real absolute value or a p-adic absolute value. [1]

Contents

Definitions

Two absolute values and on the rationals are defined to be equivalent if they induce the same topology; this can be shown to be equivalent to the existence of a positive real number such that

(Note: In general, if is an absolute value, is not necessarily an absolute value anymore; however if two absolute values are equivalent, then each is a positive power of the other. [2] ) The trivial absolute value on any field K is defined to be

The real absolute value on the rationals is the standard absolute value on the reals, defined to be

This is sometimes written with a subscript 1 instead of infinity.

For a prime number p, the p-adic absolute value on is defined as follows: any non-zero rational x can be written uniquely as , where a and b are coprime integers not divisible by p, and n is an integer; so we define

Proof

The following proof follows the one of Theorem 10.1 in Schikhof (2007).

Let be an absolute value on the rationals. We start the proof by showing that it is entirely determined by the values it takes on prime numbers.

From the fact that and the multiplicativity property of the absolute value, we infer that . In particular, has to be 0 or 1 and since , one must have . A similar argument shows that .

For all positive integer n, the multiplicativity property entails . In other words, the absolute value of a negative integer coincides with that of its opposite.

Let n be a positive integer. From the fact that and the multiplicativity property, we conclude that .

Let now r be a positive rational. There exist two coprime positive integers p and q such that . The properties above show that . Altogether, the absolute value of a positive rational is entirely determined from that of its numerator and denominator.

Finally, let be the set of prime numbers. For all positive integer n, we can write

where is the p-adic valuation of n. The multiplicativity property enables one to compute the absolute value of n from that of the prime numbers using the following relationship

We continue the proof by separating two cases:

  1. There exists a positive integer n such that ; or
  2. For all integer n, one has .

First case

Suppose that there exists a positive integer n such that Let k be a non-negative integer and b be a positive integer greater than . We express in base b: there exist a positive integer m and integers such that for all i, and . In particular, so .

Each term is smaller than . (By the multiplicative property, , then using the fact that is a digit, write so by the triangle inequality, .) Besides, is smaller than . By the triangle inequality and the above bound on m, it follows:

Therefore, raising both sides to the power , we obtain

Finally, taking the limit as k tends to infinity shows that

Together with the condition the above argument leads to regardless of the choice of b (otherwise implies ). As a result, all integers greater than one have an absolute value strictly greater than one. Thus generalizing the above, for any choice of integers n and b greater than or equal to 2, we get

i.e.

By symmetry, this inequality is an equality. In particular, for all , , i.e. . Because the triangle inequality implies that for all positive integers n we have , in this case we obtain more precisely that .

As per the above result on the determination of an absolute value by its values on the prime numbers, we easily see that for all rational r, thus demonstrating equivalence to the real absolute value.

Second case

Suppose that for all integer n, one has . As our absolute value is non-trivial, there must exist a positive integer n for which Decomposing on the prime numbers shows that there exists such that . We claim that in fact this is so for one prime number only.

Suppose per contra that p and q are two distinct primes with absolute value strictly less than 1. Let k be a positive integer such that and are smaller than . By Bezout's identity, since and are coprime, there exist two integers a and b such that This yields a contradiction, as

This means that there exists a unique prime p such that and that for all other prime q, one has (from the hypothesis of this second case). Let . From , we infer that . (And indeed in this case, all positive give absolute values equivalent to the p-adic one.)

We finally verify that and that for all other prime q, . As per the above result on the determination of an absolute value by its values on the prime numbers, we conclude that for all rational r, implying that this absolute value is equivalent to the p-adic one.

Another Ostrowski's theorem

Another theorem states that any field, complete with respect to an Archimedean absolute value, is (algebraically and topologically) isomorphic to either the real numbers or the complex numbers. This is sometimes also referred to as Ostrowski's theorem. [3]

See also

Related Research Articles

In number theory, an arithmetic, arithmetical, or number-theoretic function is for most authors any function f(n) whose domain is the positive integers and whose range is a subset of the complex numbers. Hardy & Wright include in their definition the requirement that an arithmetical function "expresses some arithmetical property of n".

<i>p</i>-adic number Number system extending the rational numbers

In number theory, given a prime number p, the p-adic numbers form an extension of the rational numbers which is distinct from the real numbers, though with some similar properties; p-adic numbers can be written in a form similar to decimals, but with digits based on a prime number p rather than ten, and extending to the left rather than to the right. Formally, given a prime number p, a p-adic number can be defined as a series

The Liouville lambda function, denoted by λ(n) and named after Joseph Liouville, is an important arithmetic function. Its value is +1 if n is the product of an even number of prime numbers, and −1 if it is the product of an odd number of primes.

<span class="mw-page-title-main">Archimedean property</span> Mathematical property of algebraic structures

In abstract algebra and analysis, the Archimedean property, named after the ancient Greek mathematician Archimedes of Syracuse, is a property held by some algebraic structures, such as ordered or normed groups, and fields. The property, typically construed, states that given two positive numbers and , there is an integer such that . It also means that the set of natural numbers is not bounded above. Roughly speaking, it is the property of having no infinitely large or infinitely small elements. It was Otto Stolz who gave the axiom of Archimedes its name because it appears as Axiom V of Archimedes’ On the Sphere and Cylinder.

In algebra, a valuation is a function on a field that provides a measure of the size or multiplicity of elements of the field. It generalizes to commutative algebra the notion of size inherent in consideration of the degree of a pole or multiplicity of a zero in complex analysis, the degree of divisibility of a number by a prime number in number theory, and the geometrical concept of contact between two algebraic or analytic varieties in algebraic geometry. A field with a valuation on it is called a valued field.

In mathematics, smooth functions and analytic functions are two very important types of functions. One can easily prove that any analytic function of a real argument is smooth. The converse is not true, as demonstrated with the counterexample below.

<span class="mw-page-title-main">Carmichael function</span> Function in mathematical number theory

In number theory, a branch of mathematics, the Carmichael functionλ(n) of a positive integer n is the smallest positive integer m such that

In mathematics, the mediant of two fractions, generally made up of four positive integers

In statistics and information theory, a maximum entropy probability distribution has entropy that is at least as great as that of all other members of a specified class of probability distributions. According to the principle of maximum entropy, if nothing is known about a distribution except that it belongs to a certain class, then the distribution with the largest entropy should be chosen as the least-informative default. The motivation is twofold: first, maximizing entropy minimizes the amount of prior information built into the distribution; second, many physical systems tend to move towards maximal entropy configurations over time.

In mathematics, the von Mangoldt function is an arithmetic function named after German mathematician Hans von Mangoldt. It is an example of an important arithmetic function that is neither multiplicative nor additive.

In additive combinatorics a discipline within mathematics, Freiman's theorem is a central result which indicates the approximate structure of sets whose sumset is small. It roughly states that if is small, then can be contained in a small generalized arithmetic progression.

In linear algebra, Weyl's inequality is a theorem about the changes to eigenvalues of an Hermitian matrix that is perturbed. It can be used to estimate the eigenvalues of a perturbed Hermitian matrix.

In mathematics, Macdonald polynomialsPλ(x; t,q) are a family of orthogonal symmetric polynomials in several variables, introduced by Macdonald in 1987. He later introduced a non-symmetric generalization in 1995. Macdonald originally associated his polynomials with weights λ of finite root systems and used just one variable t, but later realized that it is more natural to associate them with affine root systems rather than finite root systems, in which case the variable t can be replaced by several different variables t=(t1,...,tk), one for each of the k orbits of roots in the affine root system. The Macdonald polynomials are polynomials in n variables x=(x1,...,xn), where n is the rank of the affine root system. They generalize many other families of orthogonal polynomials, such as Jack polynomials and Hall–Littlewood polynomials and Askey–Wilson polynomials, which in turn include most of the named 1-variable orthogonal polynomials as special cases. Koornwinder polynomials are Macdonald polynomials of certain non-reduced root systems. They have deep relationships with affine Hecke algebras and Hilbert schemes, which were used to prove several conjectures made by Macdonald about them.

In mathematics and analytic number theory, Vaughan's identity is an identity found by R. C. Vaughan (1977) that can be used to simplify Vinogradov's work on trigonometric sums. It can be used to estimate summatory functions of the form

<span class="texhtml mvar" style="font-style:italic;">p</span>-adic valuation

In number theory, the p-adic valuation or p-adic order of an integer n is the exponent of the highest power of the prime number p that divides n. It is denoted . Equivalently, is the exponent to which appears in the prime factorization of .

In number theory, an average order of an arithmetic function is some simpler or better-understood function which takes the same values "on average".

<span class="mw-page-title-main">Rational number</span> Quotient of two integers

In mathematics, a rational number is a number that can be expressed as the quotient or fraction of two integers, a numerator p and a non-zero denominator q. For example, is a rational number, as is every integer. The set of all rational numbers, also referred to as "the rationals", the field of rationals or the field of rational numbers is usually denoted by boldface Q, or blackboard bold

<span class="mw-page-title-main">Algebraic number field</span> Finite degree (and hence algebraic) field extension of the field of rational numbers

In mathematics, an algebraic number field is an extension field of the field of rational numbers such that the field extension has finite degree . Thus is a field that contains and has finite dimension when considered as a vector space over .

In transcendental number theory, a mathematical discipline, Baker's theorem gives a lower bound for the absolute value of linear combinations of logarithms of algebraic numbers. The result, proved by Alan Baker, subsumed many earlier results in transcendental number theory and solved a problem posed by Alexander Gelfond nearly fifteen years earlier. Baker used this to prove the transcendence of many numbers, to derive effective bounds for the solutions of some Diophantine equations, and to solve the class number problem of finding all imaginary quadratic fields with class number 1.

In mathematics, there are many kinds of inequalities involving matrices and linear operators on Hilbert spaces. This article covers some important operator inequalities connected with traces of matrices.

References

  1. Koblitz, Neal (1984). P-adic numbers, p-adic analysis, and zeta-functions. Graduate Texts in Mathematics (2nd ed.). New York: Springer-Verlag. p. 3. ISBN   978-0-387-96017-3 . Retrieved 24 August 2012. Theorem 1 (Ostrowski). Every nontrivial norm ‖ ‖ on is equivalent to | |p for some prime p or for p = ∞.
  2. Schikhof (2007) Theorem 9.2 and Exercise 9.B
  3. Cassels (1986) p. 33