Padmount transformer

Last updated
Large pad-mount transformers supplying power to a computer data center. No live wires are exposed. CERN Computer Centre for LHC - Transformers.jpg
Large pad-mount transformers supplying power to a computer data center. No live wires are exposed.
Padmounted transformers in Taiwan. Taiwan Power Company Grid.jpg
Padmounted transformers in Taiwan.

A padmount or pad-mounted transformer is a ground mounted electric power distribution transformer in a locked steel cabinet mounted on a concrete pad. Since all energized connection points are securely enclosed in a grounded metal housing, a padmount transformer can be installed in places that do not have room for a fenced enclosure. Padmount transformers are used with underground electric power distribution lines at service drops, to step down the primary voltage on the line to the lower secondary voltage supplied to utility customers. A single transformer may serve one large building, or many homes.

Distribution transformer transformer that provides the final voltage transformation in an electric power distribution system

A distribution transformer or service transformer is a transformer that provides the final voltage transformation in the electric power distribution system, stepping down the voltage used in the distribution lines to the level used by the customer. The invention of a practical efficient transformer made AC power distribution feasible; a system using distribution transformers was demonstrated as early as 1882.

Electric power distribution Final stage of electricity delivery to individual consumers in a power grid

Electric power distribution is the final stage in the delivery of electric power; it carries electricity from the transmission system to individual consumers. Distribution substations connect to the transmission system and lower the transmission voltage to medium voltage ranging between 2 kV and 35 kV with the use of transformers. Primary distribution lines carry this medium voltage power to distribution transformers located near the customer's premises. Distribution transformers again lower the voltage to the utilization voltage used by lighting, industrial equipment or household appliances. Often several customers are supplied from one transformer through secondary distribution lines. Commercial and residential customers are connected to the secondary distribution lines through service drops. Customers demanding a much larger amount of power may be connected directly to the primary distribution level or the subtransmission level.

Service drop

In electric power distribution, a service drop is an overhead electrical line running from a utility pole, to a customer's building or other premises. It is the point where electric utilities provide power to their customers. The customer connection to an underground distribution system is usually called a "service lateral". Conductors of a service drop or lateral are usually owned and maintained by the utility company, but some industrial drops are installed and owned by the customer.

Contents

Pad-mounted transformers are made in power ratings from around 75 to around 5000 kVA and often include built-in fuses and switches. Primary power cables may be connected with elbow connectors, which can be operated when energized using a hot stick and allows for flexibility in repair and maintenance.

Hot stick

In the electric power distribution industry, a hot stick is an insulated pole, usually made of fiberglass, used by electric utility workers when engaged on live-line working on energized high-voltage electric power lines, to protect them from electric shock. Depending on the tool attached to the end of the hot stick, it is possible to test for voltage, tighten nuts and bolts, apply tie wires, open and close switches, replace fuses, lay insulating sleeves on wires, and perform various other tasks while not exposing the crew to a large risk of electric shock.

Design

Pad-mount transformers are available in various electrical and mechanical configurations. Pad-mount transformers operate on medium-voltage distribution systems, up to about 35 kV. The low-voltage winding matches the customer requirement and may be single-phase or three-phase.

Pad-mount transformers are (nearly always) oil-filled units and so must be mounted outdoors only. The core and coils are enclosed in a steel oil-filled tank, with terminals for the transformer accessible in an adjacent lockable wiring cabinet. The wiring cabinet has high and low voltage wiring compartments. High and low voltage underground cables from below enter the terminal compartments directly. The top of the tank has a cover secured with carriage bolt-nut assemblies. The wiring cabinet has sidewalls on two ends with doors that open sideways to expose the high and low voltage wiring compartments. [1]

Transformer oil or insulating oil is an oil that is stable at high temperatures and has excellent electrical insulating properties. It is used in oil-filled transformers, some types of high-voltage capacitors, fluorescent lamp ballasts, and some types of high-voltage switches and circuit breakers. Its functions are to insulate, suppress corona discharge and arcing, and to serve as a coolant.

Pad-mount transformers have self protecting fuses consisting of a bayonet mount fuse placed in a high voltage compartment, with a back-up high energy current limiting fuse in series to protect against secondary faults and transformer overload. The bayonet mount fuse protects against secondary faults and transformer overload and is a field replaceable device. The backup current limiting fuse operates only during transformer failure, therefore it is not field replaceable. These transformers also serve the conventional low voltage fusing requirements.

Fuse (electrical) type of low resistance resistor that acts as a sacrificial device to provide overcurrent protection, of either the load or source circuit

In electronics and electrical engineering, a fuse is an electrical safety device that operates to provide overcurrent protection of an electrical circuit. Its essential component is a metal wire or strip that melts when too much current flows through it, thereby interrupting the current. It is a sacrificial device; once a fuse has operated it is an open circuit, and it must be replaced or rewired, depending on type.

Bayonet mount

A bayonet mount or bayonet connector is a fastening mechanism consisting of a cylindrical male side with one or more radial pins, and a female receptor with matching L-shaped slot(s) and with spring(s) to keep the two parts locked together. The slots are shaped like a capital letter L with serif ; the pin slides into the vertical arm of the L, rotates across the horizontal arm, then is pushed slightly upwards into the short vertical "serif" by the spring; the connector is no longer free to rotate unless pushed down against the spring until the pin is out of the "serif".

Current limiting is the practice in electrical or electronic circuits of imposing an upper limit on the current that may be delivered to a load with the purpose of protecting the circuit generating or transmitting the current from harmful effects due to a short-circuit or similar problem in the load.

The use of polymeric cable and load break elbows enable switching and isolation to be carried out in the HV chamber in what is known as a "dead front" environment, i.e. all terminations are fully screened and watertight. [2]

Single- and three-phase pad-mounted transformers are used in underground industrial and residential power distribution systems, where there is a need for safe, reliable and aesthetically appealing transformer design. Their enclosed construction allows the installation of pad-mount transformers in public areas without the need of protective fencing. In residential areas, pad-mount transformers are usually located on street easements and supply multiple households.

An easement is a nonpossessory right to use and/or enter onto the real property of another without possessing it. It is "best typified in the right of way which one landowner, A, may enjoy over the land of another, B". It is similar to real covenants and equitable servitudes; in the United States, the Restatement (Third) of Property takes steps to merge these concepts as servitudes.

Three-phase pad-mounted transformers range in sizes from 75 kVA up to 5000 kVA with voltages ranging from 2,400 up to 34,500 delta or wye. Low-voltage pad-mounted range in size from 208y/120 through 24,940y/14,000.

While most traditional pad-mount transformer are fixed on a concrete 'pad', today small single-phase designs are also available with the transformer already mounted on a 'polypad' base so that they can be mounted on hard ground, connected, and switched on.

Standards

American National Standards Institute /Institute of Electrical and Electronic Engineers (ANSI/IEEE)

National Electrical Manufacturers Association (NEMA) Standards

Related Research Articles

Circuit breaker electrical switch designed to open when exposed to excess current


A circuit breaker is an automatically operated electrical switch designed to protect an electrical circuit from damage caused by excess current from an overload or short circuit. Its basic function is to interrupt current flow after a fault is detected. Unlike a fuse, which operates once and then must be replaced, a circuit breaker can be reset to resume normal operation.

Single-wire earth return technology to supply energy by single wire where earth will serve as return conductor

Single-wire earth return (SWER) or single-wire ground return is a single-wire transmission line which supplies single-phase electric power from an electrical grid to remote areas at low cost. Its distinguishing feature is that the earth is used as the return path for the current, to avoid the need for a second wire to act as a return path.

Power engineering subfield of electrical engineering, which deals with power generation, conversion, storage, transport and forwarding in electrical networks and use of electrical energy

Power engineering, also called power systems engineering, is a subfield of electrical engineering that deals with the generation, transmission, distribution and utilization of electric power, and the electrical apparatus connected to such systems. Although much of the field is concerned with the problems of three-phase AC power – the standard for large-scale power transmission and distribution across the modern world – a significant fraction of the field is concerned with the conversion between AC and DC power and the development of specialized power systems such as those used in aircraft or for electric railway networks. Power engineering draws the majority of its theoretical base from electrical engineering.

IEC 60309 Standard for industrial and multi-phase sockets in Europe

IEC 60309 is an international standard from the International Electrotechnical Commission (IEC) for "plugs, socket-outlets and couplers for industrial purposes". The maximum voltage allowed by the standard is 1000 V DC or AC; the maximum current, 800 A; and the maximum frequency, 500 Hz. The ambient temperature range is −25 °C to 40 °C.

Split-phase electric power type of single-phase electric power distribution

A split-phase or single-phase three-wire system is a type of single-phase electric power distribution. It is the AC equivalent of the original Edison three-wire direct-current system. Its primary advantage is that it saves conductor material over a single-ended single-phase system, while only requiring a single phase on the supply side of the distribution transformer.

Electrical wiring electrical installation of cabling and associated devices such a switches

Electrical wiring is an electrical installation of cabling and associated devices such as switches, distribution boards, sockets, and light fittings in a structure.

Electrical wiring in the United Kingdom is commonly understood to be an electrical installation for operation by end users within domestic, commercial, industrial, and other buildings, and also in special installations and locations, such as marinas or caravan parks. It does not normally cover the transmission of electrical power to them.

Current transformer current transformer

A current transformer (CT) is a type of transformer that is used to measure alternating current (AC). It produces a current in its secondary which is proportional to the current in its primary.

Switchgear

In an electric power system, switchgear is composed of electrical disconnect switches, fuses or circuit breakers used to control fan, protect and isolate electrical equipment. Switchgear is used both to de-energize equipment to allow work to be done and to clear faults downstream. This type of equipment is directly linked to the reliability of the electricity supply.

Extra-low voltage (ELV) is an electricity supply voltage in a range which carries a low risk of dangerous electrical shock. There are various standards that define extra-low voltage. The International Electrotechnical Commission member organizations and the UK IET define an ELV device or circuit as one in which the electrical potential between conductor or electrical conductor and earth (ground) does not exceed 50 V a.c. or 120 V d.c.. EU's Low Voltage Directive applies from 50 to 1,000 V a.c. and from 75 to 1,500 V d.c.

NEMA connector type of power plugs standardized by the National Electrical Manufacturers Association

NEMA connectors are power plugs and receptacles used for AC mains electricity in North America and other countries that use the standards set by the US National Electrical Manufacturers Association. NEMA wiring devices are made in current ratings from 15 to 60 amperes (A), with voltage ratings from 125 to 600 volts (V). Different combinations of contact blade widths, shapes, orientation, and dimensions create non-interchangeable connectors that are unique for each combination of voltage, electric current carrying capacity, and grounding system.

Transformer types

A variety of types of electrical transformer are made for different purposes. Despite their design differences, the various types employ the same basic principle as discovered in 1831 by Michael Faraday, and share several key functional parts.

Motor control center assembly of one or more enclosed sections having a common power bus and principally containing motor control units

A motor control center (MCC) is an assembly to control some or all electric motors in a central location. It consists of multiple enclosed sections having a common power bus and with each section containing a combination starter, which in turn consists of motor starter, fuses or circuit breaker, and power disconnect. A motor control center can also include push buttons, indicator lights, variable-frequency drives, programmable logic controllers, and metering equipment. It may be combined with the electrical service entrance for the building.

Bus duct

In electrical power distribution, a bus duct, is a sheet metal duct containing either copper or aluminium busbars for the purpose of conducting a substantial current of electricity. It is an alternative means of conducting electricity to power cables or cable bus.

Low-voltage network

A low-voltage network or secondary network is a part of electric power distribution which carries electric energy from distribution transformers to electricity meters of end customers. Secondary networks are operated at a low voltage level, which is typically equal to the mains voltage of electric appliances.

Mr. Ouch

Mr. Ouch is a hazard symbol developed by the National Electrical Manufacturers Association (NEMA) to represent electrical hazards. Unlike other high-voltage warning symbols, Mr. Ouch was specifically designed with young children in mind.

In an electrical power distribution system, a ring main unit(RMU) is a factory assembled, metal enclosed set of switchgear used at the load connection points of a ring-type distribution network. It includes in one unit two switches that can connect the load to either or both main conductors, and a fusible switch or circuit breaker and switch that feed a distribution transformer. The metal enclosed unit connects to the transformer either through a bus throat of standardized dimensions, or else through cables and is usually installed outdoors. Ring main cables enter and leave the cabinet. This type of switchgear is used for medium-voltage power distribution, from 7200 volts to about 36000 volts.

References

  1. "Padmount Transformer". The Electricity Forum. Retrieved 2011-01-02.
  2. Langley Engineering. The information contained within this site is copyrighted to Langley Engineering unless otherwise stated. "Pad Mount Transformers". Langley Engineering. Retrieved 2011-01-02.