This article needs additional citations for verification .(April 2022) |
In theoretical physics a quantum field theory is said to have a parity anomaly if its classical action is invariant under a change of parity of the universe, but the quantum theory is not invariant.
This kind of anomaly can occur in odd-dimensional gauge theories with fermions whose gauge groups have odd dual Coxeter numbers. They were first introduced by Antti J. Niemi and Gordon Walter Semenoff in the letter Axial-Anomaly-Induced Fermion Fractionization and Effective Gauge-Theory Actions in Odd-Dimensional Space-Times and by A. Norman Redlich in the letter Gauge Noninvariance and Parity Nonconservation of Three-Dimensional Fermions and the article Parity violation and gauge noninvariance of the effective gauge field action in three dimensions. It is in some sense an odd-dimensional version of Edward Witten's SU(2) anomaly in 4-dimensions, and in fact Redlich writes that his demonstration follows Witten's.
Consider a classically parity-invariant gauge theory whose gauge group G has dual Coxeter number h in 3-dimensions. Include n Majorana fermions which transform under a real representation of G. This theory naively suffers from an ultraviolet divergence. If one includes a gauge-invariant regulator then the quantum parity invariance of the theory will be broken if h and n are odd.
Consider for example Pauli–Villars regularization. One needs to add n massive Majorana fermions with opposite statistics and take their masses to infinity. The complication arises from the fact that the 3-dimensional Majorana mass term, is not parity invariant, therefore the possibility exists that the violation of parity invariance may remain when the mass goes to infinity. Indeed, this is the source of the anomaly.
If n is even, then one may rewrite the n Majorana fermions as n/2 Dirac fermions. These have parity invariant mass terms, and so Pauli–Villars may be used to regulate the divergences and no parity anomaly arises. Therefore, for even n there is no anomaly. Moreover, as the contribution of 2n Majorana fermions to the partition function is the square of the contribution of n fermions, the square of the contribution to the anomaly of n fermions must be equal to one. Therefore, the anomalous phase may only be equal to a square root of one, in other words, plus or minus one. If it is equal to one, then there is no anomaly. Therefore, the question is, when is there an ambiguity in the partition function of a factor of -1.
We want to know when the choice of sign of the partition function is ill-defined. The possibility that it be ill-defined exists because the action contains the fermion kinetic term
where ψ is a Majorana fermion and A is the vector potential. In the path integral, the exponential of the action is integrated over all of the fields. When integrating the above term over the fermion fields one obtains a factor of the square root of the determinant of the Dirac operator for each of the n Majorana fermions.
As is usual with a square root, one needs to determine its sign. The overall phase of the partition function is not an observable in quantum mechanics, and so for a given configuration this sign choice can be made arbitrarily. But one needs to check that the sign choice is consistent. To do this, let us deform the configuration through the configuration space, on a path which eventually returns to the original configuration. If the sign choice was consistent then, having returned to the original configuration, one will have the original sign. This is what needs to be checked.
The original spacetime is 3-dimensional, call the space M. Now we are considering a circle in configuration space, which is the same thing as a single configuration on the space . To find out the number of times that the sign of the square root vanishes as one goes around the circle, it suffices to count the number of zeroes of the determinant on , because each time that a pair of eigenvalues changes sign there will be a zero. Notice that the eigenvalues come in pairs, as discussed for example in Supersymmetric Index Of Three-Dimensional Gauge Theory, and so whenever one eigenvalue crosses zero, two will cross.
Summarizing, we want to know how many times the sign of the square root of the determinant of a Dirac operator changes sign as one circumnavigates the circle. The eigenvalues of the Dirac operator come in pairs, and the sign changes each time a pair crosses zero. Thus we are counting the zeroes of the Dirac operator on the space . These zeroes are counted by the Atiyah–Singer index theorem, which gives the answer h times the second Chern class of the gauge bundle over . This second Chern class may be any integer. In particular it may be one, in which case the sign changes h times. If the sign changes an odd number of times then the partition function is ill-defined, and so there is an anomaly.
In conclusion, we have found that there is an anomaly if the number n of Majorana fermions is odd and if the dual Coxeter number h of the gauge group is also odd.
3-dimensional Chern–Simons gauge theories are also anomalous when their level is half-integral. In fact, the derivation is identical to that above. Using Stokes' theorem and the fact that the exterior derivative of the Chern–Simons action is equal to the instanton number, the 4-dimensional theory on has a theta angle equal to the level of the Chern–Simons theory, and so the 4-dimensional partition function is equal to -1 precisely when the instanton number is odd. This implies that the 3-dimensional partition function is ill-defined by a factor of -1 when considering deformations over a path with an odd number of instantons.
In particular, the anomalies coming from fermions and the half-level Chern–Simons terms will cancel if and only if the number of Majorana fermions plus twice the Chern–Simons level is even. In the case n=1, this statement is the half-integer quantization condition in supersymmetric Chern–Simons gauge theories presented in The Chern-Simons Coefficient in Supersymmetric Yang-Mills Chern-Simons Theories. When n=2 this contribution to the partition function was found in and 3 gauge theories in Branes and Supersymmetry Breaking in Three Dimensional Gauge Theories.
The fact that both Chern–Simons terms and Majorana fermions are anomalous under deformations with odd instanton numbers is not a coincidence. When the Pauli–Villars mass for n Majorana fermions is taken to infinity, Redlich found that the remaining contribution to the partition function is equal to a Chern–Simons term at level −n/2. This means in particular that integrating out n charged Majorana fermions renormalizes the Chern–Simons level of the corresponding gauge theory by −n/2. The fact that the Chern–Simons level is only allowed to take discrete values implies that the coupling constant can not enter into the correction to the level. This only occurs for the 1-loop correction, therefore the contribution of the Majorana fermions to the Chern–Simons level may be precisely calculated at 1-loop and all higher loop corrections vanish.
In physics, charge conjugation is a transformation that switches all particles with their corresponding antiparticles, thus changing the sign of all charges: not only electric charge but also the charges relevant to other forces. The term C-symmetry is an abbreviation of the phrase "charge conjugation symmetry", and is used in discussions of the symmetry of physical laws under charge-conjugation. Other important discrete symmetries are P-symmetry (parity) and T-symmetry.
In mathematics, the Chern–Simons forms are certain secondary characteristic classes. The theory is named for Shiing-Shen Chern and James Harris Simons, co-authors of a 1974 paper entitled "Characteristic Forms and Geometric Invariants," from which the theory arose.
An instanton is a notion appearing in theoretical and mathematical physics. An instanton is a classical solution to equations of motion with a finite, non-zero action, either in quantum mechanics or in quantum field theory. More precisely, it is a solution to the equations of motion of the classical field theory on a Euclidean spacetime.
In theoretical physics, a chiral anomaly is the anomalous nonconservation of a chiral current. In everyday terms, it is equivalent to a sealed box that contained equal numbers of left and right-handed bolts, but when opened was found to have more left than right, or vice versa.
In quantum physics an anomaly or quantum anomaly is the failure of a symmetry of a theory's classical action to be a symmetry of any regularization of the full quantum theory. In classical physics, a classical anomaly is the failure of a symmetry to be restored in the limit in which the symmetry-breaking parameter goes to zero. Perhaps the first known anomaly was the dissipative anomaly in turbulence: time-reversibility remains broken at the limit of vanishing viscosity.
The Chern–Simons theory is a 3-dimensional topological quantum field theory of Schwarz type developed by Edward Witten. It was discovered first by mathematical physicist Albert Schwarz. It is named after mathematicians Shiing-Shen Chern and James Harris Simons, who introduced the Chern–Simons 3-form. In the Chern–Simons theory, the action is proportional to the integral of the Chern–Simons 3-form.
A chiral phenomenon is one that is not identical to its mirror image. The spin of a particle may be used to define a handedness, or helicity, for that particle, which, in the case of a massless particle, is the same as chirality. A symmetry transformation between the two is called parity transformation. Invariance under parity transformation by a Dirac fermion is called chiral symmetry.
In quantum mechanics, a parity transformation is the flip in the sign of one spatial coordinate. In three dimensions, it can also refer to the simultaneous flip in the sign of all three spatial coordinates :
In particle physics, Yukawa's interaction or Yukawa coupling, named after Hideki Yukawa, is an interaction between particles according to the Yukawa potential. Specifically, it is a scalar field ϕ and a Dirac field ψ of the type
In lattice field theory, fermion doubling occurs when naively putting fermionic fields on a lattice, resulting in more fermionic states than expected. For the naively discretized Dirac fermions in Euclidean dimensions, each fermionic field results in identical fermion species, referred to as different tastes of the fermion. The fermion doubling problem is intractably linked to chiral invariance by the Nielsen–Ninomiya theorem. Most strategies used to solve the problem require using modified fermions which reduce to the Dirac fermion only in the continuum limit.
In quantum field theory, the theta vacuum is the semi-classical vacuum state of non-abelian Yang–Mills theories specified by the vacuum angleθ that arises when the state is written as a superposition of an infinite set topologically distinct vacuum states. The dynamical effects of the vacuum are captured in the Lagrangian formalism through the presence of a θ-term which in quantum chromodynamics leads to the fine tuning problem known as the strong CP problem. It was discovered in 1976 by Curtis Callan, Roger Dashen, and David Gross, and independently by Roman Jackiw and Claudio Rebbi.
In quantum field theory, a fermionic field is a quantum field whose quanta are fermions; that is, they obey Fermi–Dirac statistics. Fermionic fields obey canonical anticommutation relations rather than the canonical commutation relations of bosonic fields.
In lattice field theory, staggered fermions are a fermion discretization that reduces the number of fermion doublers from sixteen to four. They are one of the fastest lattice fermions when it comes to simulations and they also possess some nice features such as a remnant chiral symmetry, making them very popular in lattice QCD calculations. Staggered fermions were first formulated by John Kogut and Leonard Susskind in 1975 and were later found to be equivalent to the discretized version of the Dirac–Kähler fermion.
In theoretical physics, topological string theory is a version of string theory. Topological string theory appeared in papers by theoretical physicists, such as Edward Witten and Cumrun Vafa, by analogy with Witten's earlier idea of topological quantum field theory.
In quantum field theory, the anomaly matching condition by Gerard 't Hooft states that the calculation of any chiral anomaly for the flavor symmetry must not depend on what scale is chosen for the calculation if it is done by using the degrees of freedom of the theory at some energy scale. It is also known as the 't Hooft condition and the 't Hooft UV-IR anomaly matching condition.
In theoretical physics a nonrenormalization theorem is a limitation on how a certain quantity in the classical description of a quantum field theory may be modified by renormalization in the full quantum theory. Renormalization theorems are common in theories with a sufficient amount of supersymmetry, usually at least 4 supercharges.
Higher-dimensional supergravity is the supersymmetric generalization of general relativity in higher dimensions. Supergravity can be formulated in any number of dimensions up to eleven. This article focuses upon supergravity (SUGRA) in greater than four dimensions.
In physics, a gauge theory is a type of field theory in which the Lagrangian does not change under local transformations according to certain smooth families of operations.
This page is a glossary of terms in string theory, including related areas such as supergravity, supersymmetry, and high energy physics.
In mathematics, and especially differential geometry and mathematical physics, gauge theory is the general study of connections on vector bundles, principal bundles, and fibre bundles. Gauge theory in mathematics should not be confused with the closely related concept of a gauge theory in physics, which is a field theory which admits gauge symmetry. In mathematics theory means a mathematical theory, encapsulating the general study of a collection of concepts or phenomena, whereas in the physical sense a gauge theory is a mathematical model of some natural phenomenon.