This article needs additional citations for verification .(December 2013) |
In quantum mechanics, the particle in a one-dimensional lattice is a problem that occurs in the model of a periodic crystal lattice. The potential is caused by ions in the periodic structure of the crystal creating an electromagnetic field so electrons are subject to a regular potential inside the lattice. It is a generalization of the free electron model, which assumes zero potential inside the lattice.
When talking about solid materials, the discussion is mainly around crystals – periodic lattices. Here we will discuss a 1D lattice of positive ions. Assuming the spacing between two ions is a, the potential in the lattice will look something like this:
The mathematical representation of the potential is a periodic function with a period a. According to Bloch's theorem, [1] the wavefunction solution of the Schrödinger equation when the potential is periodic, can be written as:
where u(x) is a periodic function which satisfies u(x + a) = u(x). It is the Bloch factor with Floquet exponent which gives rise to the band structure of the energy spectrum of the Schrödinger equation with a periodic potential like the Kronig–Penney potential or a cosine function as it was shown in 1928 by Strutt [2] . The solutions can be given with the help of the Mathieu functions.
When nearing the edges of the lattice, there are problems with the boundary condition. Therefore, we can represent the ion lattice as a ring following the Born–von Karman boundary conditions. If L is the length of the lattice so that L ≫ a, then the number of ions in the lattice is so big, that when considering one ion, its surrounding is almost linear, and the wavefunction of the electron is unchanged. So now, instead of two boundary conditions we get one circular boundary condition:
If N is the number of ions in the lattice, then we have the relation: aN = L. Replacing in the boundary condition and applying Bloch's theorem will result in a quantization for k:
The Kronig–Penney model (named after Ralph Kronig and William Penney [3] ) is a simple, idealized quantum-mechanical system that consists of an infinite periodic array of rectangular potential barriers.
The potential function is approximated by a rectangular potential:
Using Bloch's theorem, we only need to find a solution for a single period, make sure it is continuous and smooth, and to make sure the function u(x) is also continuous and smooth.
Considering a single period of the potential:
We have two regions here. We will solve for each independently: Let E be an energy value above the well (E>0)
To find u(x) in each region, we need to manipulate the electron's wavefunction:
And in the same manner:
To complete the solution we need to make sure the probability function is continuous and smooth, i.e.:
And that u(x) and u′(x) are periodic:
These conditions yield the following matrix:
For us to have a non-trivial solution, the determinant of the matrix must be 0. This leads us to the following expression:
To further simplify the expression, we perform the following approximations:
The expression will now be:
For energy values inside the well (E < 0), we get: with and .
Following the same approximations as above (), we arrive at with the same formula for P as in the previous case .
In the previous paragraph, the only variables not determined by the parameters of the physical system are the energy E and the crystal momentum k. By picking a value for E, one can compute the right hand side, and then compute k by taking the of both sides. Thus, the expression gives rise to the dispersion relation.
The right hand side of the last expression above can sometimes be greater than 1 or less than –1, in which case there is no value of k that can make the equation true. Since , that means there are certain values of E for which there are no eigenfunctions of the Schrödinger equation. These values constitute the band gap.
Thus, the Kronig–Penney model is one of the simplest periodic potentials to exhibit a band gap.
An alternative treatment [4] to a similar problem is given. Here we have a delta periodic potential:
A is some constant, and a is the lattice constant (the spacing between each site). Since this potential is periodic, we could expand it as a Fourier series: where
The wave-function, using Bloch's theorem, is equal to where is a function that is periodic in the lattice, which means that we can expand it as a Fourier series as well:
Thus the wave function is:
Putting this into the Schrödinger equation, we get: or rather:
Now we recognize that:
Plug this into the Schrödinger equation:
Solving this for we get:
We sum this last equation over all values of K to arrive at:
Or:
Conveniently, cancels out and we get:
Or:
To save ourselves some unnecessary notational effort we define a new variable: and finally our expression is:
Now, K is a reciprocal lattice vector, which means that a sum over K is actually a sum over integer multiples of :
We can juggle this expression a little bit to make it more suggestive (use partial fraction decomposition):
If we use a nice identity of a sum of the cotangent function (Equation 18) which says: and plug it into our expression we get to:
We use the sum of cot and then, the product of sin (which is part of the formula for the sum of cot) to arrive at:
This equation shows the relation between the energy (through α) and the wave-vector, k, and as you can see, since the left hand side of the equation can only range from −1 to 1 then there are some limits on the values that α (and thus, the energy) can take, that is, at some ranges of values of the energy, there is no solution according to these equation, and thus, the system will not have those energies: energy gaps. These are the so-called band-gaps, which can be shown to exist in any shape of periodic potential (not just delta or square barriers).
For a different and detailed calculation of the gap formula (i.e. for the gap between bands) and the level splitting of eigenvalues of the one-dimensional Schrödinger equation see Müller-Kirsten. [5] Corresponding results for the cosine potential (Mathieu equation) are also given in detail in this reference.
In some cases, the Schrödinger equation can be solved analytically on a one-dimensional lattice of finite length [6] [7] using the theory of periodic differential equations. [8] The length of the lattice is assumed to be , where is the potential period and the number of periods is a positive integer. The two ends of the lattice are at and , where determines the point of termination. The wavefunction vanishes outside the interval .
The eigenstates of the finite system can be found in terms of the Bloch states of an infinite system with the same periodic potential. If there is a band gap between two consecutive energy bands of the infinite system, there is a sharp distinction between two types of states in the finite lattice. For each energy band of the infinite system, there are bulk states whose energies depend on the length but not on the termination . These states are standing waves constructed as a superposition of two Bloch states with momenta and , where is chosen so that the wavefunction vanishes at the boundaries. The energies of these states match the energy bands of the infinite system. [6]
For each band gap, there is one additional state. The energies of these states depend on the point of termination but not on the length . [6] The energy of such a state can lie either at the band edge or within the band gap. If the energy is within the band gap, the state is a surface state localized at one end of the lattice, but if the energy is at the band edge, the state is delocalized across the lattice.
In mathematical physics and mathematics, the Pauli matrices are a set of three 2 × 2 complex matrices that are traceless, Hermitian, involutory and unitary. Usually indicated by the Greek letter sigma, they are occasionally denoted by tau when used in connection with isospin symmetries.
The quantum harmonic oscillator is the quantum-mechanical analog of the classical harmonic oscillator. Because an arbitrary smooth potential can usually be approximated as a harmonic potential at the vicinity of a stable equilibrium point, it is one of the most important model systems in quantum mechanics. Furthermore, it is one of the few quantum-mechanical systems for which an exact, analytical solution is known.
In probability theory and statistics, the beta distribution is a family of continuous probability distributions defined on the interval [0, 1] or in terms of two positive parameters, denoted by alpha (α) and beta (β), that appear as exponents of the variable and its complement to 1, respectively, and control the shape of the distribution.
In mathematics, the beta function, also called the Euler integral of the first kind, is a special function that is closely related to the gamma function and to binomial coefficients. It is defined by the integral
In physics, specifically in quantum mechanics, a coherent state is the specific quantum state of the quantum harmonic oscillator, often described as a state that has dynamics most closely resembling the oscillatory behavior of a classical harmonic oscillator. It was the first example of quantum dynamics when Erwin Schrödinger derived it in 1926, while searching for solutions of the Schrödinger equation that satisfy the correspondence principle. The quantum harmonic oscillator arise in the quantum theory of a wide range of physical systems. For instance, a coherent state describes the oscillating motion of a particle confined in a quadratic potential well. The coherent state describes a state in a system for which the ground-state wavepacket is displaced from the origin of the system. This state can be related to classical solutions by a particle oscillating with an amplitude equivalent to the displacement.
In condensed matter physics, Bloch's theorem states that solutions to the Schrödinger equation in a periodic potential can be expressed as plane waves modulated by periodic functions. The theorem is named after the Swiss physicist Felix Bloch, who discovered the theorem in 1929. Mathematically, they are written
In physics, the Rabi cycle is the cyclic behaviour of a two-level quantum system in the presence of an oscillatory driving field. A great variety of physical processes belonging to the areas of quantum computing, condensed matter, atomic and molecular physics, and nuclear and particle physics can be conveniently studied in terms of two-level quantum mechanical systems, and exhibit Rabi flopping when coupled to an optical driving field. The effect is important in quantum optics, magnetic resonance, and quantum computing, and is named after Isidor Isaac Rabi.
In physics, the S-matrix or scattering matrix is a matrix which relates the initial state and the final state of a physical system undergoing a scattering process. It is used in quantum mechanics, scattering theory and quantum field theory (QFT).
In mathematical physics, the WKB approximation or WKB method is a method for finding approximate solutions to linear differential equations with spatially varying coefficients. It is typically used for a semiclassical calculation in quantum mechanics in which the wavefunction is recast as an exponential function, semiclassically expanded, and then either the amplitude or the phase is taken to be changing slowly.
In quantum mechanics, a two-state system is a quantum system that can exist in any quantum superposition of two independent quantum states. The Hilbert space describing such a system is two-dimensional. Therefore, a complete basis spanning the space will consist of two independent states. Any two-state system can also be seen as a qubit.
The finite potential well is a concept from quantum mechanics. It is an extension of the infinite potential well, in which a particle is confined to a "box", but one which has finite potential "walls". Unlike the infinite potential well, there is a probability associated with the particle being found outside the box. The quantum mechanical interpretation is unlike the classical interpretation, where if the total energy of the particle is less than the potential energy barrier of the walls it cannot be found outside the box. In the quantum interpretation, there is a non-zero probability of the particle being outside the box even when the energy of the particle is less than the potential energy barrier of the walls.
In mathematics, in particular in algebraic geometry and differential geometry, Dolbeault cohomology (named after Pierre Dolbeault) is an analog of de Rham cohomology for complex manifolds. Let M be a complex manifold. Then the Dolbeault cohomology groups depend on a pair of integers p and q and are realized as a subquotient of the space of complex differential forms of degree (p,q).
Continuous wavelets of compact support alpha can be built, which are related to the beta distribution. The process is derived from probability distributions using blur derivative. These new wavelets have just one cycle, so they are termed unicycle wavelets. They can be viewed as a soft variety of Haar wavelets whose shape is fine-tuned by two parameters and . Closed-form expressions for beta wavelets and scale functions as well as their spectra are derived. Their importance is due to the Central Limit Theorem by Gnedenko and Kolmogorov applied for compactly supported signals.
In many-body theory, the term Green's function is sometimes used interchangeably with correlation function, but refers specifically to correlators of field operators or creation and annihilation operators.
The Gamow factor, Sommerfeld factor or Gamow–Sommerfeld factor, named after its discoverer George Gamow or after Arnold Sommerfeld, is a probability factor for two nuclear particles' chance of overcoming the Coulomb barrier in order to undergo nuclear reactions, for example in nuclear fusion. By classical physics, there is almost no possibility for protons to fuse by crossing each other's Coulomb barrier at temperatures commonly observed to cause fusion, such as those found in the Sun. When George Gamow instead applied quantum mechanics to the problem, he found that there was a significant chance for the fusion due to tunneling.
The term generalized logistic distribution is used as the name for several different families of probability distributions. For example, Johnson et al. list four forms, which are listed below.
The Kapitza–Dirac effect is a quantum mechanical effect consisting of the diffraction of matter by a standing wave of light, in complete analogy to the diffraction of light by a periodic grating, but with the role of matter and light reversed. The effect was first predicted as the diffraction of electrons from a standing wave of light by Paul Dirac and Pyotr Kapitsa in 1933. The effect relies on the wave–particle duality of matter as stated by the de Broglie hypothesis in 1924. The matter-wave diffraction by a standing wave of light was first observed using a beam of neutral atoms. Later, the Kapitza-Dirac effect as originally proposed was observed in 2001.
The Luttinger–Kohn model is a flavor of the k·p perturbation theory used for calculating the structure of multiple, degenerate electronic bands in bulk and quantum well semiconductors. The method is a generalization of the single band k·p theory.
The kicked rotator, also spelled as kicked rotor, is a paradigmatic model for both Hamiltonian chaos and quantum chaos. It describes a free rotating stick in an inhomogeneous "gravitation like" field that is periodically switched on in short pulses. The model is described by the Hamiltonian
This is a glossary for the terminology often encountered in undergraduate quantum mechanics courses.