Partition regularity

Last updated

In combinatorics, a branch of mathematics, partition regularity is one notion of largeness for a collection of sets.

Contents

Given a set , a collection of subsets is called partition regular if every set A in the collection has the property that, no matter how A is partitioned into finitely many subsets, at least one of the subsets will also belong to the collection. That is, for any , and any finite partition , there exists an i  n such that belongs to . Ramsey theory is sometimes characterized as the study of which collections are partition regular.

Examples

This generalizes Ramsey's theorem, as each is a barrier. (Nash-Williams, 1965)

Diophantine equations

A Diophantine equation is called partition regular if the collection of all infinite subsets of containing a solution is partition regular. Rado's theorem characterises exactly which systems of linear Diophantine equations are partition regular. Much progress has been made recently on classifying nonlinear Diophantine equations. [1] [2]

Related Research Articles

In mathematical logic, model theory is the study of the relationship between formal theories, and their models. The aspects investigated include the number and size of models of a theory, the relationship of different models to each other, and their interaction with the formal language itself. In particular, model theorists also investigate the sets that can be defined in a model of a theory, and the relationship of such definable sets to each other. As a separate discipline, model theory goes back to Alfred Tarski, who first used the term "Theory of Models" in publication in 1954. Since the 1970s, the subject has been shaped decisively by Saharon Shelah's stability theory.

<span class="mw-page-title-main">Nonstandard analysis</span> Calculus using a logically rigorous notion of infinitesimal numbers

The history of calculus is fraught with philosophical debates about the meaning and logical validity of fluxions or infinitesimal numbers. The standard way to resolve these debates is to define the operations of calculus using epsilon–delta procedures rather than infinitesimals. Nonstandard analysis instead reformulates the calculus using a logically rigorous notion of infinitesimal numbers.

In the mathematical discipline of set theory, forcing is a technique for proving consistency and independence results. It was first used by Paul Cohen in 1963, to prove the independence of the axiom of choice and the continuum hypothesis from Zermelo–Fraenkel set theory.

In mathematics, the adele ring of a global field is a central object of class field theory, a branch of algebraic number theory. It is the restricted product of all the completions of the global field, and is an example of a self-dual topological ring.

In mathematics, the total variation identifies several slightly different concepts, related to the structure of the codomain of a function or a measure. For a real-valued continuous function f, defined on an interval [a, b] ⊂ R, its total variation on the interval of definition is a measure of the one-dimensional arclength of the curve with parametric equation xf(x), for x ∈ [a, b]. Functions whose total variation is finite are called functions of bounded variation.

Rado's theorem is a theorem from the branch of mathematics known as Ramsey theory. It is named for the German mathematician Richard Rado. It was proved in his thesis, Studien zur Kombinatorik.

In mathematics, piecewise syndeticity is a notion of largeness of subsets of the natural numbers.

In mathematics, an IP set is a set of natural numbers which contains all finite sums of some infinite set.

In mathematics, the Milliken–Taylor theorem in combinatorics is a generalization of both Ramsey's theorem and Hindman's theorem. It is named after Keith Milliken and Alan D. Taylor.

In mathematics, Milliken's tree theorem in combinatorics is a partition theorem generalizing Ramsey's theorem to infinite trees, objects with more structure than sets.

In mathematics, the Vitali covering lemma is a combinatorial and geometric result commonly used in measure theory of Euclidean spaces. This lemma is an intermediate step, of independent interest, in the proof of the Vitali covering theorem. The covering theorem is credited to the Italian mathematician Giuseppe Vitali. The theorem states that it is possible to cover, up to a Lebesgue-negligible set, a given subset E of Rd by a disjoint family extracted from a Vitali covering of E.

In mathematics, infinitary combinatorics, or combinatorial set theory, is an extension of ideas in combinatorics to infinite sets. Some of the things studied include continuous graphs and trees, extensions of Ramsey's theorem, and Martin's axiom. Recent developments concern combinatorics of the continuum and combinatorics on successors of singular cardinals.

In partition calculus, part of combinatorial set theory, a branch of mathematics, the Erdős–Rado theorem is a basic result extending Ramsey's theorem to uncountable sets. It is named after Paul Erdős and Richard Rado. It is sometimes also attributed to Đuro Kurepa who proved it under the additional assumption of the generalised continuum hypothesis, and hence the result is sometimes also referred to as the Erdős–Rado–Kurepa theorem.

In the mathematical theory of infinite graphs, the Erdős–Dushnik–Miller theorem is a form of Ramsey's theorem stating that every infinite graph contains either a countably infinite independent set, or a clique with the same cardinality as the whole graph.

Folkman's theorem is a theorem in mathematics, and more particularly in arithmetic combinatorics and Ramsey theory. According to this theorem, whenever the natural numbers are partitioned into finitely many subsets, there exist arbitrarily large sets of numbers all of whose sums belong to the same subset of the partition. The theorem had been discovered and proved independently by several mathematicians, before it was named "Folkman's theorem", as a memorial to Jon Folkman, by Graham, Rothschild, and Spencer.

This is a glossary of set theory.

The Dubins–Spanier theorems are several theorems in the theory of fair cake-cutting. They were published by Lester Dubins and Edwin Spanier in 1961. Although the original motivation for these theorems is fair division, they are in fact general theorems in measure theory.

In mathematics, structural Ramsey theory is a categorical generalisation of Ramsey theory, rooted in the idea that many important results of Ramsey theory have "similar" logical structure. The key observation is noting that these Ramsey-type theorems can be expressed as the assertion that a certain category has the Ramsey property.

In mathematics, the hypergraph regularity method is a powerful tool in extremal graph theory that refers to the combined application of the hypergraph regularity lemma and the associated counting lemma. It is a generalization of the graph regularity method, which refers to the use of Szemerédi's regularity and counting lemmas.

References

  1. Di Nasso, Mauro; Luperi Baglini, Lorenzo (January 2018). "Ramsey properties of nonlinear Diophantine equations". Advances in Mathematics . 324: 84–117. arXiv: 1606.02056 . doi:10.1016/j.aim.2017.11.003. ISSN   0001-8708.
  2. Barrett, Jordan Mitchell; Lupini, Martino; Moreira, Joel (May 2021). "On Rado conditions for nonlinear Diophantine equations". European Journal of Combinatorics. 94: 103277. arXiv: 1907.06163 . doi:10.1016/j.ejc.2020.103277. ISSN   0195-6698.

Sources

  1. Vitaly Bergelson, N. Hindman Partition regular structures contained in large sets are abundant J. Comb. Theory A93 (2001), 18–36.
  2. T. Brown, An interesting combinatorial method in the theory of locally finite semigroups, Pacific J. Math.36, no. 2 (1971), 285–289.
  3. W. Deuber, Mathematische Zeitschrift 133, (1973) 109–123
  4. N. Hindman, Finite sums from sequences within cells of a partition of N, J. Comb. Theory A17 (1974) 1–11.
  5. C.St.J.A. Nash-Williams, On well-quasi-ordering transfinite sequences, Proc. Camb. Phil. Soc.61 (1965), 33–39.
  6. N. Hindman, D. Strauss, Algebra in the Stone–Čech compactification, De Gruyter, 1998
  7. J.Sanders, A Generalization of Schur's Theorem, Doctoral Dissertation, Yale University, 1968.